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1.0 EXECUTIVE SUMMARY

1.1 OBJECTIVE

The objective of this effort was to develop and publish new derating
criteria so that the reliability of new upcoming and modified designs will
be enhanced. Stress derating parameters were needed for advanced
components such as VHSIC (very high speed itcegrated circuits), MIMIC
(microwave/millimeter wave monolithic integrated circuits), GaAs FET
(gallium arsenide field effect transistor), and photonic devices since the
current standards were lacking quidance. The new standards will be used by
hardware design contractors and will serve as the basis tor an update of
AFSC Pamphlet 800-27, "Part Derating Guidelines." The complete parts list
for which updated stress derating criteria was to be developed is shown in
table 1-1.

Table 1-1 Parts List

VHSIC RF Pulse Transistor
ASIC RF Multi-transistor
MIMIC Package
Mi.croprosessor Photo Transistor
PROM Photo Dicde

- ultra-violet erasable
- electrically erasable
-~ eleccrically aiterable
- avalanche induced
migration

Pover Transistor
- silicon
- G3As
- MISIET

Opto-electzenic Coupler

Injection Laser Diode

LED

Hybrid Deposited Film
Resistor

Chip Resistor

Chip Capacitor

SAW




1.2 BACKGROUND

Part stress derating has long been established as an inportant element in
enhancing system reliability. Derating is generally defined as the
practice of limiting electrical, thermal and mechanical stresses on parts
to levels below their specified or proven capabilities in order to provide
a safety margin for operation and to improve system reliabilitv. Most
contractors have developed their own intermal derating practices, but until
recently, the DoD (Department of Defense) had no standard practices. RL
recognized the need for standardizing this area. This standardization will
pro7ide guidance to those contractors without their own policies, indicate
a means for invoking contractual derating requirements and create a
benchmark against which other derating methods may be evaluated.

In keeping with the cost effective tailoring approach to reliability as
defined in MIL--STD-785, "Reliability Programs for Systems and Equipment
Pevelopment and Production Boaing Aerospace (Seattle, WA) under contract
to RL, divided derating criteria into three different criticality levels.
The three level derating approach provides a means of tailoring as a
function cf mission criticality and severity of the end use environment.
RL adapted the results of this study in the publication ot AFSC Pamphlet
800-27, “Part Derating Guidelines." Further work on derating was performed
by Martin Marietta (Orlando, Fl) under contract to RL, which included
development. of an integrated circuit thermal measurement technique to
verify derating. Both of these efforts preciuded the developmoent cof
deruiing factors for new parts designed since the studi-- were conducted.

While under contract to RL, Westinghouse rece. ly completed the
YReliability Znalysis/Assessment <€ Advanced Technology" (RA/AAT) s.tudyJL
with the intent of updating the microcircuit section of MII~HDBK-217. With
the availability of the sitress-failure relationships develcped as part of
that study, as well as -"'ose Working relationships with their suppliers and
avajlable field failure data, Westinghbouse was selected to ccnduct this
"Advancad Technolegy Comporent Derating” study.




1.3 APPROACH

Stress derating . advanced technology components is a critical step in the
d%ién of elrctronic sjrrstéms which eanploy these components. Only by the
increased lifetime advantage offered by stress derating can the systen
reliability requirement be realized when using advanced technology
components ir the system designer’s intended application.

It was the intent of the authors of the revised AFSC Pamphlet 800-27 to
maintain the spirit of the current version of the Pamphlet (hereafter
referred to as "the Guidelines") and, at the same time, minimize
unnecessary constraints placed on the designers of electronic systems by
the derating criteria. These unnecessary constraints resulc from the
application of generalized derating criteria intended to encompass ail
components within a specific compenent style in order to keep the
guidelines simplified. It was believed that, unless the designer can
employ derating criteria in his design with minimum difficulty, he will be
reluctant to take the time necessary to apply the derating criteria
properly. In this day of Total Quality, process streamlining and high
speed design workstations, the designer is motivated to be proactive in all
areas affecting his design. Therefore, in the formulation of the new
stress derating criteria, a change in the derating criteria format is
presented (for microcircuits), with the thought that the designer should,

and would, know more about the components with which he was designing, and
be more likely to design an optimum, reliable system by applying the
appropriate stress derating criteria. The need for the change in the
stress derating criteria format was a direct result of the logical approach
taken to update the stress derating criteria, and the structure of the
reliability models that describe the relationships between applied stresses

and component failures.

It is recognized that the stress derating criteria outlined in the
Guidelines is, by definition, a description of the maximum allowed stresses
that may be applied to a component according to a specified mission




criticality level. It is also recognized that these maximum stresses
result in a maximum component failure rate predicted by accepted
reliability models. It is noted here that, at the time the current version
of the Guidelines was released, the accepted reliability models were
included in MIL-HDBK-217D Notice 1. Therefore, the authors of the current
version of the Guidelines considered the maximum component failure rates,
calculated using the reliability models of MIL-HDBK-217D Notice 1 and the
maximum stress derating criteria outlined in the current version ot the
Guidelines, acceptable for a specified criticality level. A logical
approach to updating this stress derating criteria would be to first
calculate these acceptable maximum compeoinent failure rates at each
criticality level. Then, the stress-failure relationships outlined in
updateqd relizbility models, such as those included in MIL-HDBX-217E Notice
1 and the RA/AAT study, may be evaluated such that new maximum stresses
that result in these same maximum failure rates may be identified. These
maximum stresses become the updated stress derating criteria.

This approach to updating the stress derating criteria has (at least) three
benefits. First, the stress trade-offs performed to derive the new maximum
stresses by evaluating the updated reliability models will identify the
“sensitive' derating parameters in the model that, when varied, result in
the largest changes in expected failure rate. Second, the approach
provides a framework from which derating results can be easily
communicated, That ig, the concept of how changes in “failure rate" affect
design reliability is more commonly understood among system designers and
reliability engineers than how changes in "percent of rated vajue® affect
design reliability. Third, the approach provides a basis for evolving the
stress derating criteria into a fcontinuous" function of criticality rather
than the currently accepted three levels of criticality. This benefit is
expanded upon in a section near the end of this report,

This stress derating approach was applied to several classes of
components. The approach was first successfully applied to microcircuits.
Having just completed the Reliability Analysis/Assessment of Advanced




Technologies (RA/AAT) study, Westinghcuse was intimately aware of those
stress factors which directly influence the reliability of advanced
technology microcircuits. From a study of the RA/AAT results, it was
observed that microcircuit complexity was a ‘"sensitive" derating
parameter. Because of the impact that the complexity of the microcircuit
has on its failure rate, part of the updated strrss derating criteria was
gei'arated as simple one variable equations. The variable, of course, was
complexity. For exarple, in the development of the stress derating
criteria for MOS Digital ASIC/VHSIC comporents, the supply voltage derating
criteria for criticality level I has the form

Suvpply Voltage = 129 / (G ** 0.320) vclts

where G is the number of gates in the microzircuit. In scome instances, the
calculated derated stress was virtually independent of complexity. In that
case, a constanc derating value was substituted for the derating equation.
Also, if the calculated derated stress was ouiside the region of validity
of the reliability model, the value of the maximum stress identified in the
nodel was substituted for the derating equation. For example, the maxinmum
junction temperatures allowed for MOS Digital ASIC/VHSIC level III
compo'ients, although dependent upon complexity, are abcve the junction
temperatures recordesd in the reliability data used in the development of
the reliabkility model. Since 125 deg C was the maximum Jjunction
temperature identified in the reliability data, the maximum temperature of
125 deg C is substituted for ‘he derating equation.

Uther microcircuit derating parameters were not explicitly identified in
the reliability models. These parameters, such as fanout and frequency,
were considered design and application attributes which influenced the
database from which the reliakility models were developed. Therefore, the
updated stress derating criteria for these parameters were developed frow
reviews of the literature, supplier information and uther pertinent. stress
derating guidelines.

8]



A similar stress derating method was used for silicon bipolar powet
transistors. Alvhough the MIL-HDBK-217D Notice 1 reliability model for
silicon bipwlar power trancistors was significantly differen: from th-e
MIL-HDBK~217E Notice 1 :reliability model, the approach used in the
development of the microcircuit derating criteria could be applied co
silicon bipalar power trensistors. The difference between the microcircuit
approach and the silicon bipolar power transistor approach was +that the
derating criteria for the power transistor was developed with equal weight
applied to the stresses identified in the reliability model of
MIL~-HDBK-217E Notice 1. That is, the voltage derating and temperature
derating for criticality level I must both be 65% of maximum rating so that
the failure rate calculated using MIL~HDBK=-217E Notice 1 would equal the
failure rate calculated using MIL-HDBK-217D Notice 1 (4 FITS). The
temperature derating was then transformed into temperature units with a
value of 95 deg C (based on a 150 deg C maximum rating). For further de-
tails on this calculation, see section 6.1 on page 1C2.

Since reliability models for silicon power MOSFETs and GaAs power
transistors were not available at the time the current version of the
Guidelines were published, different approaches were taken to develop
stress derating criteria for these devices.

For power MOSFETs, the stress derating criteria was developed by a trorough
review of the literature and supplier surveys, and consensus of both
military and industry stress derating guidelines. It was deter. ined that

margins of safety and success needed in the intended application,

The stress derating approuch for GaAs power transistors was to collect
reliability data, develop a stress-failure model and, assuming a maximum
failure rate for each criticality level (provided by RI), calculatz the
L o:ximum stresses allowed. This effort resulted in maximum channel
temperatures of 85, 100 and 125 deg C for criticality levels I, II and IIl,
respectively.




’ " i ~.‘--4: L

With the exception that a reliability model was developed on the RA/AAT
study, the stress derating approach for GaAs MIMICs was similar to the
approach for GaAs power transistors. The maximua channel temperatures for
MIMIC devices were calculated to be 90, 130 and 150 deg C for criticality
levels I, ITI and III, respectively.

It is noted here that, with the exception of the application notes, the
silicon and GaAs RF pulse transistors are derated similarly to the silicon
and GaAs power transistors since both silicon and Gaas RF pulse transistors
must be able to dissipate as much power in pulse mode as the silicon and
GaAs power transistors dissipate in continuous mode. GaAs power
transisters (pcwer MESFETs) are often used in RF pulse applications

Opto—electronic components presented a different challenge in developing
updatea stress derating guidelines. The differences between the
reliability models of MIL-HDBK-217D Notice 1 and MIL~HDBK~-217E Notice 1

rders of magnitude difference in (improved)

0

resulted in up to cseveral
predicted failure rates. The quality factor had changed 2400% to 7000%,
and the PiT factor of MIL~-HDBK-217E Notice 1 u*ilizes an activation energy
of approximately one third of the activation energy used in MIL-HDBK-217D
Notice 1. The use of the silicon bipolar powver transistor approach to
stress derating wWould have resulted in virtually no stress derating
required to mest the failurz rates that were considered acceptable at the
time the currert: version of the Guidelines was released. As an alternative
approach, the development of updated "acceptable" failure rates for the
three criticality levels was considered. The failure rates that can be
obtained by applying currently accepted derating guidelines to the
reliability models were deemed to be as "acceptable" as any other values
chosen. Theretore, without having to do the failure rate calculations and
the reverse stress analysis, the currently accepted guidelines become the
updated stress derating criteria. A consensus of both military and
industry stress derating guidelines was used in the development of this
criteria.



There was apparently no change in the reliability models since
MIL~HDBK=-217D Notice 1 for the passive components evaluated, namely thick
and thin film resistors, chip capacitors and SAW devices, and therafore
only a consensus of military and industry guidelines was again used in the
development of the stress derating criteria for these components.

To check if the expected results of applying siress derating crite.ia to
the components identified in table 1-1 were obtained, a failure rate
analysis was performed on available field failure data. The analvsis was
performed on field failure daia provided by failure databases from the
AN/ARG~66 and AN/APG—68 radar programs and the ALQ-131 yadar jammer program
during the sorties flown in the 1988 and 1989 time period. It was
discovered that the failure rates for PROM devices, power transistors, RF
transistors, cpto-couplery, LEDs and thin film chip resistors weve close to
or below the failure rate that would be expected when applying the stress
derating criteriu outlined in the current version of the Guidelines. Only
thick film resistors and ceramic chip capacitors experienced failure rates
sigrificantly above expected failure rates. The most likely reason for
this disccepancy is that these components often get removed as part of the
rework for the suspected failure of another component. Since failure
analyses are tvpically not performed -n most of the components remcved from
systems, it is quite possible that some of the "failed" components are not
truly failed. The calculated failure rates in this analysis would
lherefore be inflated. The results of this verification analysis are, in
either case, most encourariag.

At the completion of this study, one concern is still left unyesolved. The
concern is that the designer is "ocked ir" to a level of derating criteria
based on mission type of the whole system (SF, AUF or GF, for example)
rather than the true conponent or board criticality. This concern
prompted the authors of this study to include a section near the end of
this report which outlines an alternate approach to implementing stress
derating gquidell es. The intent of this approach was to justify the

reasonahbleress of imposing criticality level I guidelines on a criticality




level IIT mission design, and vice versa, depending as much upon svstem
architecture &5 the safety and success of the mission. The possibility of
evolving stress derating criteria into a Ycontinuous® functicn of

criticality is evaluated.



1.4 LIST OF ACRONYMS

The following is a list of the acronyms used in this report.

AFSC
APD
ASIC
ATCD
CTR
EEPROM
EM

EED

ey

FET
FMEA
FPMH
GaAs
ILD
JFET
LED
MESFET
MIL~HDLDBK
MIMIC
MOS
MOSFET
PROM
RA/AAT
RL
RTOK
SAW
SOA
TDDB
VHSIC
VISt

Air Force Systems Command

- Avalanche Photo Dicde

Application Specific Integrated Circuit

Advanced Technology Component Derating

Current Transfer Ratio

Electrically Erasable Programmable Read-Only Memory
Electromigration

Electrostatic Discharge

Electron Volt

Field Effect Transistor

Failure Modes and Effects Analysis

Failures Per Million Hours

- Gallium Arsenide

Injection Laser Diode

- Junction Field Effect Transistor

Light Emitting Diode

Metal Semiconductor Field Effect Transistor

Military Handbook

Microwave,/Millimeter Wave Integrated Circuit

Metal Oxide Semiconductor

Metal Oxide Semiconductor Field Effect Transistor
Programmable Read-Only Memory

Reliability Analysis/Assessment of Advanced Technologies
Rome Laboratory

Retest Okay

- Surface Acoustic Wa,\}e

Safe Operating Area

Time Depandent Dielectric Breakdown
Very High Spe=d Integrated Circuit
Very Large Scale Integration

10




2.0 REPORT ORGANIZATION

Section 3.0 presents the three approaches taken in the development of the
'updatad stress deratihcj ariteria. Each approach is outlined briefly in
this section with the details of the approaches provided in the following
seven sections., No stress derating criteria is developed in this section.

Section 4.0, 5.0, 6.0, %0, 8.0, 9.0 and 10.0 discuss silicon
microcircuits, MIMIC devicis, power transistors, RF trancictors,
opto~electronic devices, passive components and SAW devices, respectively.
Stress derating crireria and associated application notes are provided in
each section for the relevant components in that section.

Section 110 presents a summary of the accumulated field failure data for
the available component types outlined in table i-l. A ccmparison of the
predicted failure rate based on level II criticality derating and the
cobserved failure rate is made to verify the accuracy of the stress derating
criteria.

Section 12.0 discusses an alternate approach to stress derating derived
from observations made in the developmer.t of the updated stress derating
criteria for this study.

Section 13.0 summarizes the results of the study and presents conclusions
and recommendations for follow-on analysis.

Section 14.0 contains the bibliography of the literature used in part to
develop the updated stress derating criteria.

Appendix A provides a comprehensive sumiary of the updated stress derating
criteria and associated application notes.

Appendix B provides sample Fortran programs used in the development of
stress derating criteria for microcircuits.

11
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3.0 ADVANCED TECHNOLOGY COMPONENT DERATING

The developrent of stress derating criteria for acdvanced technology
componen's reguires a tundamentally sound understanding of the
relationships between the electrical, thermal and mechanical stresses
applied to the compcnents and the resulting life distributions of the
component popuiations. Component reliability models are used to describe
these relationships and provide insight into the functional dependence of
component life distributions on the applied stresses.

The magnitude of the stress derating determines the amount of expected
change in component lifetime or shift in the life distribution of a
ropulation of compwnents. In general the more the stress is derated, the
longer the life of the componant. Therefore, the expected result of
derating the stresses applied to a component is to decrease its failure
rate. Since most reliability models relate electrical, thermal and
mechanical stresses to component litetime in tue form of a failure rate, it
is reasonahble to use the concept of failure rate as the key link between
the reliability model and the stress derating criteria.

The minimum acceptakle stress derating depends upon the criticality of the
mission. Criticality levels referenced to mission safety and succecc, as
outlined in the current version of the Guidelines, can be established and
contrasted in terms of failure rates. The minimum acceptable stress
derating for each criticality level sets the maximum failure rate that
might be experienced by the component in a mission of specified
criticality. It is reasonable to maximize the stress derating, when
possible, to provide a greater than minimum margin of safety and success.

The definitions of the criticality levels used in the updated version of
the Guidelines are consistent with the current version of the Guidelines.
It is noted, however, that the formulation of the updated 3tress derating
criteria is riven by the component failure rates associated with each
criticality level and not solely the definitions of criticality.




o Criticality Level I (aximum Derating). Used with equipment whose
failure would substantially jeopardize the life ot personnel,
would seriously jeopardize the operational mission, or would
iy require repairs that are infeasible or economically unjustified,
‘..' i or used when extremely high operational readiness requirements
are specified. ILevel I derating is considered those stress
levels below which further reliability gain is small or at which
further derating will create design problems that are
unacceptable. This level is intended for the most critical
applications in which design difficulty can be justified by the
reliability requirement.

N3

Criticality level II. Used with equipment whose failure would degrade
the operatioral mission or would result in unjustifiable repair
costs, or used when high operational readiness requirements are
specified. level II derating iz considered still in the range in
which reliability gains are rapid as stress is decreased.
However, achieving designs witlhh these reductions in allowed
stress is significantly more difficult than at level IIT.

Criticality level III. Used with equipment of lesser criticality than
level I or II, namely, equipment whose failure may not jeopardize
the operational mission or that can be quickly and economically
repaired., level IIT derating is that stress level reduction that

* causes minor design difficulties and yet generates a large

incremental reliability gain. The large reliability gain is

realized since the effects of stress increase greatly as the
absolute maximum rating is approached.

Supplemented by updated stress~failure data provided by three sources,
., namely, a thorough review of the literature, evaluation of available field
data and component supplier surveys, the component reliability models
developed on the RIL "Reliability Analysis/Assessment of Advanced
Technologies" (RA/AAT)l and "Reliability Prediction Models for Discrete

p8]




Semiconductors'19® studies provided a starting point for the development
of the updated stress derating criteria for several of the component types
identified in table 1-1. For those component types not covered by current
reliability models, stress derating criteria was developed from either
reliability models generated from accumulated life test data or from
consensus of current stress derating guidelines available fror multiple
military and industry sources. These approaches to understanding the
stress—failure relationships of advanced technology components, outlined in
figure 3-1, were executed on a priority basis in the order listed above.
That is, if a current reliability model was available, it was used
(@approach A). 1If a reliability model was not available, a reliability
model was developed, when possible, from accumulated stress-failure data

[ Device List j
R
i i
[ Keyword List | [ WEC Part Number |
3
Vendor Visit Vendor Contacts System identity
(Vendor Vik] [Verdor Gortacts] | ]
v Y __ _
[ Theary | [ Exper. ] Field ][__E}_?re_[jL Field | [Factory || !'-'ijerldj
. A 4 v J L 4 ‘
[ Strass / Failure Daiabase li.cluding Application Limitations |
—
[ 8. Develnp vodel ]
_ —_ y
} |_Stress / Feilure Relationships [+~ A. Rel. Models |
{_ Derating Criteria__J+—{ C. Derating Guidelines |
‘e ~eee—etl Criteria Verification |

Figure 3-1 Flowchart of Technical Approach
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(approach B). If it was not possible to develop a reliability model, then
a consensus of available derating guidelines was used to c¢enerate the
proposed derating criteria (approach C). Table 3-1 identifies the approach
used for each component type listed in table 1-1.

In the approach taken to update the stress derating criteria using
reliability models, approach A, a methodology was established in which a
maximum fajilure rate was calculated for each criticality level for each
component type. The reliability model used to generate these maximum
failure rates was MIL~HDBK-217D Notice 1, since this revision of
MIL~HDBK-217 was the current Handbook revision (13 June 1983) at the time
in which the current version of the Guidelines was released (5 December

Table 3~1 Derating Criteria Approach

Device Type Armroach
ASIC A,C
VHSIC A,C
Microprocessor A,C
PROM A,C
MIMIC A,C
Power Transistor A,B,C
RF Pulse Transistor C
RF Multi~transistor Package Cc
Photo Transistor C
Photo Diode C
Opto-electronic Coupler c
Injection laser Dicde c
LED C
Hybrid Deposited Film Resistor X
Chip Resistor C
Chip Capacitor C
SAW C
KEY: - Reliability Model Available

New Reliability Model Developed
- Concensus of Available Derating Guidelines
Insufficient Information

XOww
!




1983'. The reliabiility models and derating guid:lines usad to calcu.ate
the failure rates are shown in table 3~2 for each cowporent type for which
approach A was used. These failure rates, listed in table 3-3, represent
the maximum failure rates expected for the given criticality level allowed
by the current version of the Guidelines.

The example of how the stress derating criteria was applied in the
development of the maximum failure rates for MOS digital ASIC/VHSIC
microcircuits is shown in table 3-4. Using the stress derating criteria
for NOS microcircuits in the current Guidelines, the maximum values of each
factor in the reliability model were determined for each criticality
level. The failure rates were calculated to be 0.3402, 3.0592 and 31.640
fpmh for criticality levels I, IT and III, respectively (see table 3-3)}.

Table 3-2 Reliability Models and Derating Guidelines
Used In Developing Maximum Failure Rates

Canponent Type MIT~HDBK-217D Notice 1 AFSCP 800-27 (1Y83)
ASIC/VHSIC Microcircuits: Microcircuits:

~ MOS Digital ~ Marolithic MOS Randam Logic LST -~ Digital (MOS)

- MOS Linear - Monolithic MOS Linear -~ Linear (MOS)

- Bipolar Digital | ~ Menolithic Bipolar Ran. Iogic ISI | - Digital (Bipolar)
- Bipolar Linear -~ Monolithic Bipolar Linear - Linear (Bipolar)
Microprocessor Microcircuits: Microgirmits:

- M5 ~ Microprocessor (MGS) - Digital (MOS)

~ Bipolar - Microprocessor (Bipolar) - Digital (Ripclarm)

PRM Microcircuits: Mlcrocn:uuts
- MOS - PROM (MOS) - Dig.ltal (M_)S)
- Bipolar - PROM (Bipolar) ~ Digital (Bipoclar)

Power Transistors | Transistors: Transistors:

- Silicon Bipolar | - Group I, Silicon - Bipolar Silicon
- Gals - (Not Listed) - Field Effect

- MOSFET - (Not Listed) ~ Field Effect




Table 3-3 Maximum Failure Rates for Each Criticality Level

Failure Rates (fpmh) for Levels:
Canponent Type I II III
ASIC/VHSIC
- MOS Digital 0.3402 3.0593 31.6405
- MXS Linear 0.4932 4.3920 46.0962
- Bipolar Digital 0.3126 1.5862 11.6614
= Bipolaxr Linear 0.4932 2.7477 24.8862
Microprocessor
- MOS 0.3402 3.0593 31.6405
~ Bipolar 0.3126 1.5862 11.6614
PROM
- MOS 2.7371 22.7459% 264.2236
- Bipolar 0.6322 2.8023 23.67%4
Power Transistor
- Silicon Bipolar 0.0040 1.2917 0.5763

The reliability model parameters and derating values for the microcircuits
and power transistors for which approach A was used are shown in
abbreviated format in tables 3-5 and 3-6, respectively. The calculated
maximum failure rates "bound" the stresses driving the component
reliability, described by the updated component reliability models, such
that these maximum failure rates could not be exceeded. The values of the
stresses, in absalute form or as a percentage of the maximum rated value,
became the new derating criteria. Using this methodology, the new Jerating
criteria could remain consistent with the old derating criteria. That is,
the updated stress derating criteria will not allow a component to be used
in a particular mission with a higher failure rate than was allowed by the
current version of the Guidelines. 1In fact, the derating criteria
. developed for more complex microcircuits results in a lower failure rate
per function for these microcircuits than less complex microcircuits. It
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Table 3-4 MOS Digital ASIC Reliahility Model Factors at Derated Values

Level Factor Value Stress Derating Attributes

I PiQ 0.5 S level

I PiT 6.9 85 deg C, A = 7532

I Piv 1.0 5 volits

I PiE 0.9 SF

X PiL 1.0 > 4 months production

I c1 0.0919 20,000 Gates

I 2 0.0024 20,000 Gates

I c3 0.048 64 pin DIP, glass seal

IT PiQ 1.0 B Level

11 PiT 16.1 100 deg C, A = 7532

II Piv 1.76 | 12~15.5 volts, 85% derating, 100 deg C
1T PiE 9.0 AUF

II ?iL 1.0 > 4 months production

11 ClL 0.0919 20,000 Gates

II 2 0.0024 | 20,000 Gates

11 C3 0.048 64 pin DIP, glass seal
i Pig €.5 B-2 Level
111 PiT 27.3 110 deg C, A = 7532
IIT Piv 1.89 12-15.5 volts, 85% derating, 110 deg C
IIIx PiE 2.5 GF
11T PiL 1.0 > 4 months preduction

111 Cl 0.0919 20,000 Gates

IIT 2 0.0024 20,000 Gates
III 3 0.048 64 pin DIP, glass seal

is noted here that the environmental factors were chosen for the same
reason other constants and parameters were chosen, that is, to give the
maximum fajlure rates. It should be noted, however, that the value of the
worst case environmental factor (as well as the cther factors) in the
development of the maximum failure rate cancels with the worst case
environmental factor (as well as the other factors) in the development of
the updated stress derating criteria. Again, the intent was not to develop
"conservative" results, but results that would be considered commensurate
with the results already experienced when using the stress derating
criteria outlined by the current version of the Guidelines.
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iability Model Factors and Derated Values for

ASIC/VHSIC, Microprocessors and PROMs (continued)

Table 3-5 R
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ctors and Lerated Values for

ASIC/VHSIC, Microprocessors and PROMs (continued)

bility Model Fa
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bility Model Factors and Derated Values for

ASIC/VHSIC, Microprocessors and PROMs (continued)

Table 3-5 R

Qe ady 19N - ¥/N AN

SYIUoH 4 < 39 1835 $581D ‘d1G 4%9 | SiLE 9LGSH SLg 9489 £

SYIUCH ¥# < any 1825 $S®15 ‘qdid dv9 | s1:8 9¢559 SIlE 9989 4

SYIUOH ¢ < s 1925 $SR1D ‘dIQ 4%9 | 8318 91659 SILE 9¢5Ly i Q-1 (4910318) RO

SYIWOH ¢ < 49 1835 SS9 ‘diq 499 | 5118 9559 S1tE 9¢3559 £

SYJUCH 4 < ny 1895 €SEIS ‘dIQ d%9 | §3{9 $€GS9 SItd 9£¢59 4

SUIWOR ¥ < EL] 1833 8S91S ‘d1G d%9 | s318 98559 SIL6 9559 i L@i2-1In (SON) mO¥d

SYIUCH ¢ « i3 1695 Ss@1D 'dIq d%¥ $33%9 02 Y/N £

SUIOK & < iny 1893 S5€19 ‘dIq d%¢ $9189 Q2 ¥Y/N r4 (Jeodig)

SYJUOW 4 < 3S 1695 §SP1D ‘dI1Q d%9 §3189 02 v/N } LQ2i2-n J085920.00J 21N

SYIUOK ¥ < 49 1995 SS€}5 ‘dig dy9 €339 02 Y/N s

SYIWCK ¢ < iny 1938 $5919 'd1Q d99 83389 02 A 78] 2 (SOn}

SYIUOH ¥ < is 1995 §6939 'd1g dv9 $3389 02 Y/N LAiLZ-TIN 4085320400 | W

SYIUCH ¥ < 39 1895 $5919 ‘dIQ dv9 | “suvdy gOg Y/N z ,

SYJUOH ¥ < any 189S $S919 ‘41Q dy9 | "suRJl QO¢ \ 7L Z Jeauyy Jwjodtg

SYIUOW ¥ < s 1995 85310 “d1qQ a9 | "sued] Q0E ¥/N l tQ12-TIn EITR IR ]

SYIUOW & < 4 1835 €5919 ‘414 d%% $2399 02 ¥/N € IS1 2180y

SYIUCH ¥4 < ny 1RSS5 §S819 ‘dId dvy $3189 NOZ ¥/N 4 wopuey Jeyodig

SYIWOW ¥ < NS 1835 §SB19 'd1Q d49 83189 XD2 Y/R i vQ2i2-1In 143} jolon

SYIUON ¢ < 43 1995 SSR1D 410 dvy | ‘suRdy 00f Y/R €

SYIUON ¥ < inv 1835 65815 ‘diaQ d%9 | *sued) J0€ ¥/M 2z JEJULT SCOW

SYIUOH ¥ < is 1895 $5913 ‘d1g 449 | "swdd] (0% Y/N H LQ212-T1M Y3 1OUCK

SYIUOK ¥ < 49 1895 5810 ‘d[qQ d%9 $3I8S NOZ YiN € 157 23601

SYIUOW 7 < 0V 1995 358619 ‘419 o4¢ | se3e9 NOZ ¥/N 4 uwopusy Sos

SYIUOW 4 < s 1925 85219 ‘dIQ d49 533189 N2 Y/N } T2LZ-1IN Jf4if1oUoN

(1td) (31d) (€3} (21 (id}d} 13497 SRR adAy
fuiudNay IUI0J LAUT A px91dwos AJPXR1AWo) | "433L tS0dd | T3p4d | wopasipadd ¥2}A3Q

IjBuoL oY wo13diJIsaey

22




Table 3-6 Reliability Model Factors and Derated Values for
Silicon Bipolar Power Transistors

Description Factors
Device Prediction | Crit. Base FR Quality | Complaxity | Env’ ~onment
Type Reference Level | (LamnbdaB) (PiQ) €1 (iE)
Transistor MIL-21701 1 0.0092 0.12 1.00%0 0.40
Grouwp 1 2 0.0092 0.24 1.0000 65.00
{Silicon) 3 0,0092 1.20 1.0000 5.8¢
Description factors Failure Rate
Device Prediction | Crit. | Application | Power Rating | Volt. Stress | (Failures /
Type Reference lLevel (PiA) (PiR) (Pis) 1076 Hrs)
Transistor MIL-217D1 1 1.50 5.00 1.20 0.0040
Grows ! 2 1.50 S.00 1.20 1.2017
(Silicon) 3 1.50 5.00 1.20 0.57
Description Rationale
Device Prediction | Crit. Base FR Quality Complexity Envirorment
Type Reference Level (LembdaB) (PiQ) ({3} (FiE)
Trangistor MIL-2i17D1 ] (rax) JANTRV Single Trans. SF
Gruup 1 2 (max) JANTX Single Trans. AUF
(Silicon) 3 {max) JAN Single Trans. GF
Description
Device Prediction | Crit. | Application | Power Rating | volt. Stress
Type Reference Level {PiA) {PiR) (Pis)
Transistor MIL-217D1 1 Lincar 200 Watts s2 = 704
Group 1 2 Linear 209 watts s2 = 70%
(3ilicon) 3 Linear 200 Watts s2 = 70X




In the approach to update the stress derating criteria by creating new
reliability models, approach B, stress~failure data accumulated from the
literature search and supplier surveys was examined, and the reliability
model was generated. It is noted here that this approach was used only for
the temperature parameter in the reliability model for GaAs power
transistors (see Section 6.2).

If approaches A and B were not viable, then a consensus of available
derating guidelines was used to update the stress derating criteria,
approach ¢. The fourteen guidelines used in the criteria development are
listed in table 3-7. Of these fourteen guidelines, twelve guidelines were
from government or military sources and two were from industry sources.
Tre parameters selected for derating by these fourteen sources were not
consistent between the sources. Therefore, before the stress derating
critaria could be evaluated, it was first necessary to identify the key
rarameters to be derated. These key parameters were injitially limited by
the sources that specified derating criteria for three criticality levels
(guidelines A through F). The remaining parameters were included as
application notes, when appropriate. It is noted here that guidelines A
and B were exactly the same, and therefore, quidelines A and U were
considered one source in the development of the final updated stress
derating criteria. Once these parameters were identified, the consensus of
the five quidelines was obtained by calculating the median ot the stress

derating values for eachi stress paramcter.

in &1l cases, application notes and design limitations were developed from
ancurdaisd component information, obtained in the literature search or
SuLTaier sUrveys, anG extrapolated from other derating guidelines. The
avniieation notes for each component type are furnished at the end of each
prinsiv peport sections and in Appendix A. In addition, the adequacy of
€ stress derating criteria was reviewed using failure rates calculated
from azcumulated field failure data (see Section 11.0).




Talie 3-7 Government/Military/Industry Stress Derating Guideline Titles

Designator | Guideline

AF3C Pamphlet 800-27, 5 December 1983
ESD-TR-83-197

ESD-TR-85-148

RADC-TR~84--254

RADC-TR-82-177

NASC AS-4613

GSFC PPL~18 (NASA), October 1986
NAVMAT P-4855-1A

MI1~STD~2174 (AS), July 1976
MIL~STD-975H (NASA), June 1989
NAVSEA TECO0-AB-GTP-010, September 1985
MIT~STD-1547A, December 1987

OFEM A

OEM B

NERTHRNUNOANEBOOW M




4.0 MICROCIRCUIT DERATING GUIDELINES

For advanced technology silicon microcircuits, the RA/AAT rellabx.llty
modelst can be summarized in general form by

Lit,) = PiQ * (C1 * PiT + Loyc + C2 * PiE) * PiL + Lrops (to)

+ Lpy(te), (2)
where:
I{t,) is the device failure rate at time to in failures per miilion
hours,

PiQ is the quality factor, -

PiT is the temperature acceleration factor, based on technology,
PiE is the application environment factor

PiL is the learning factor,

Cl is the circuit complexity failure rate in ftailures per million

hours,
C2 is the package complexity failure rate in failures per million
hours,

Loye is the EEPROM write cycling induced failure rate in
failures per million hours,
Lyppe(te) is the time dependent dielectric breakdown (TDDB)
failure rate at time to in failures per million hours, and
i {£,) is the electromigration (EM) failure rate at time to in
failures per million hours.

A review of the literature?®-100 oohcerned with microcircuit failure,

during the time since the RA/AAT reliability models were generated,
resulted in no change to tho basic reliability models. However, it was
noted that, since failures due to electromigration, having failure rates
Lgy. are distributed normaliy with the logarithm of time with very small
variances, the effect of Lpy on the total fajlure rate, IL(t,), is
either negligible or catastrophic. Therefore, the Lgy term was




eliminated from the equation for calculating failure rate and the
clectromigration effect is presented as an application note. Without this
Ly term, the failure rate equation for deriving stress derating criteria

simpliiies to

L(t,) = PiQ % (C1 * PiT + Lgyc + C2 * PiE) * PiL + Lyppp (to)- 2

o)
The stress parameters and attributes that directly affect the calculated
failure rate for a sil’con microcircuit are embedded in the Pi, complexity,
and wear out failure rate factors of the reliability model. To extract the
maximum stresses allowed for each criticality level from the factors in the
reliability model, L(t_) in equation (2) must be set to the maximum
fajilure rate allowed by each criticality level. These maximum failure
rates are specified in table 3-3. In the approach to develop stress
derating criteria for advanced technology silicon uicrocircuits, the
parameters and attributes of the failure rate model factors were separaled

dmln e S VA H‘
into thres groups, one group for Crltlﬁall Y-S '.'l..l"' (: {C&) a v‘h"‘-a‘-, one

group for device-specific (DS) attributes and the other group for
stress-specific (SS) parameters. Table 4-1 outlines the relationship
between the factors in the failure rate equation, the distinctinn between
criticality-specific, device-specific and stress-specific parameters and
attributes associated with the factors, and the microcircuit technologies
for which these parameters and attributes are applicable.

There were two basic types of device-specific attributes, technology and
complexity. The technology attribute was handled by creating stress
derating criteria for each technology individually. For example, there are
digital and linear, M0OS and bipolar ASIC/VHSIC microcircuits. Therefore,
four stress derating tables were developed, one for digital M0OS ASIC/VHSIC
microcircuits, one for digital bipolar ASIC/VHSIC microcircuits, one for
linear MOS ASIC/VHSIC microcircuits and one for linear bipolar ASIC/VHSIC
microcircuits., The complexity attribute was handled by making the circuit
complexity parameter (i.e., number of gates, transistors or bits) a
variable in the stress derating criteria. Because of the large number of




Table 4-1 Attributes and Parameters of Microcircuit Model Factors

Application to:
Factor Type | Attribute ; Parameter MOS Bipolar

PiQ cs Application Envirorment Y Y
PiT DS Technology Y Y

S | Junction Temperature Y Y |
PiE CcS Application Envirorment Y Y
PiL cs Years In Production Y Y
Ccl DS Circuit Technology Y Y
s Circuit Camplexity Y Y
c2 DS Package Techrology Y Y
s Package Complexity Y Y
L &YC DS Circuit Complesity Y * N
ss Number of Write Cycles Y * N
L TODB DS | Circuit Complexity Y N
SSs Junction Temperature Y N
ss Supply Voltage Y N

KEY: * - EEPROMs Only

computations required, the Cl1 factor iables in the RA/AAT final report were
transformed to continuous functions. A relationship between circuit
complexity and package complexity was developed from literature sources>’
such that the package complexity parameter (i.e.,, number of pins) <could
also be handled in terms of the circuit complexity parameter. All other
relationships required in the development of the derating criteria were
also based on circuit complexity. It is noted here that all relationships
hased on circuit complexity were always developed in a conservative fashion
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such that the resulting stress derating criteria would be valid for all
complexities of microcircuits.

The criticality-specific attributes included the application environment
attribute and the years-in-production attribute. The application
environments for the PiQ factor were always S-level, B-level and B-Level
for criticality levels I, II and III, respectively. The application
environments for the PiE factor were always Sg, Ay and Gy for
criticality levels I, II and III, respectively. These application
environments were chosen since they were the most closely related to the
application environments outlined by the criticality levels in the current
version of the Guidelines and resulted in the highest failure rate for the
criticality level they represented. The years-in-production attribute for
the experience factor, PiL, were always 2 years, 1 year and 0.75 years for
criticality levels I, IT and III, respectively. These years in production
were chosen based upon current experience with component procurement for
systems that can be categorized by the definitions given for each
criticality level.

The stress~-specific parzmeaters, as mentioned previously, are the only cnes
that, when changed, re:ult in a different failure rate for any given
microcircuit. These parameters, temperature, voltage and number of write
cycles (EEPROMs only), are the ones that can be traded-off to obtain the
sare mayimum failure rate for a given microcircuit. A consistent approach
was taken (with an exception for EEPROMs, see Section 4.3) in developing
the bounds for these stress-specific: parameters such that the resulting
derating criteria would be effective, but not oppressive, in the desired

application.

This approach initially ignored the number of write cycles, or Loyc:
which was only applicable to EEPROMs. It was then assumed that, if the
time dependent dielectric breaitdnwn (TDDB) failure rate was not a factor
because wear out was not a concern, then the only stress-spezcific parameter
left was temperature. It is noted here that the defect related failure
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rate {exponential probability density function) is a concern for all
microcircuits and cannot be ignored. The independence of the TDDB-driven
wear out stresses and temperature is addressed in Section 4.1 in the
example of MOS digital ASIC/VHSIC microcircuits. For any microcircuit of a
given complexity, the temperature was calculated for which the failure rate
did not exceed the maximum failure rate given in table 3-3, dependent upon
criticality level. In calculating this maximum temperature, it was noted
that the maximum failure rate was not always the limiting factor. Because
of the form of the failure rate equation, to solve for temperature imbedded
in the PiT factor required the term L{t,)/(PiQ*Pil) to be greater than
C2*PiE. Since L(t,), PiQ, PiL and PiE are fixed for a given type of
microcircuit, €2 controls the validity of the argument. For this reason,
only microcircuits of a specified maximum complexity are acceptable in a
given criticality level. This complexity limit is included in the stress
derating criteria for microcircuits when applicable. If the maximum
temperature was calculated to be a value higher than 175 degrees Celsius,
then 175 degrees Celsius was chosen as the maximum temperature.

orce the maximum temperature had been calculated for a microcircuit of
given complexity, it was noted that any operating temperature below this
maximun temperature resulted in a calculated failure rate that was less
than the maximum failure rate allowed by the criticality level. This
difference in failure rate could then be used to bound the stresses
associated with the TDDB wear out mechanism. Tahle 4-1 shows TDDB failure
rates are only applicable to MOS microcircuits, and therefore, this
development of the derating criteria for supply current is only applicable
to MOS microcircuits.

Time dependent dielectric breakdown is a failure mechanism that results in
a component failure distribution that is normal with the logarithm of
time. That is, unlike the failure rates currently addressed by
MIL-HDBK-217 Revision E Notice 1, the TDDB failure rate is time
dependentl. There are three factors that affect the rate of failure for
TDDB, the electric field acromss the dielectric, the dielectric film




tenperature and the total area taken up by the transistor gates. a
relationship was also 4:1eveloped1 between the latter factor and
microcircuit complexity. When dealing with a failure rate model that
includes Lpppps it is assumed that the dielectric film temperature is the
same as the junction temperature defining the PiT factor. Therefore, with
th. film temperature previcusly defired and the total transistor gate area
correlated to microcircuit complexity, the only factor that is not defined
is the electric field.

This electric field factor is proportional to the supply voltage according
the dielectric thickness which is related to the complexity of the
microcircuit, The difference in failure rate between the maximum derated
temperature and the operating temperature therefore defines the maximunm
derating criteria for the supply voltage. That is, with the operating
junction temperature less than the maximum junction temperature, the
resulting failure rate is less than the maximum failure rate allowed by the
crivicality level. Therefore, the microcircuit could be operated with a
supply valtage higher than the supply voltage allowed when operating at the
maximum junction temperature provided the maximum failure rate is not

exceeded.

With the device-specific, criticality-specific and stress-specific
attributes and parameters defined, the maximum junction temperature and
maximum supply voltage (MOS microcircuits only) derating criteria was
developed. For convenience in developing this derating criteria, software
progirams were written in FORTRAN 77 programming language. Appendix B
contains an example program written to calculate the temperature and
voltage values display2d in the graphs for MOS digital ASIC/VHSIC
microcircuits. Once the derating values were calculated, a least squares
fit transformed this data into simplified equations dependent upon circuit
complexity. The simplified equations become the update stress derating
criteria for the junction temperature and supply voltage stress parameters.
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It is noted here that, in some instances, the calculated derated stress was
virtually independent of complexity. In that case, a constant derating
value was substituted for the derating equation. Also, if the calculated
derated stress was outside the region of validity of the reliability model,
the value of the maximum stress identified in the model was substituted for
the derating equation. For microcircuits, it was determined that the
applicable reliability models were based on junction temperature data that
did not exceed 125 deg C. Therefore, this maximum junction temperature was
used in those cases where the calculated derated junction temperature
stress was above 125 deg C. It is also noted that the microcircuit
reliability models outlined in the RA/AAT study were valid only up to a
specified maximun complexity. Although the data graphs generated and the
corresponding stress derating equations are continuous past the specified
naximum complexity, the stress derating criteria is not considered valid
beyond this maximum complexity. Therefore, the derating parameter of
"maximum complexity" is included in the list of derating parameters for

microcircuits.

Since existing stress derating guidelines, other than those for the
stresses explicitly identified in the reliubility models, have purposely
affected the observed failure rates of components used in applications
corresponding to one of the three criticality levels, it was necessary to
review the existing stress derating guidelines to determine their relevance
in being included in the updated stress derating guidelines, given that the
factors being derated were not explicitly included in the current
reliability models. It was observed that failure data for components that
did not abide by the stress derating criteria was not readily available
(typically due to government or military contracts that require some type
of derating) and to arbityarily remove this criteria may be irrespensible.
‘Thereiore, the updated stress derating criteria for microcircuits includes
both the nawly created criteria baced upon updated failure rate models as
well as the current criteria which was developed for parameters not
explicitly included in the updated failure rate models. It is noted here
that the only stress derating criteria included by the guideline sources
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that outline three criticality levels were included in this proposed

revision of the Guidelines.

The application notes for advanced technology microcircuits were developed
from a review of applicable literature, supplier surveys and other stress
derating guidelines. These application notes may be found at the end of
this microcircuit section and in Appendix A.
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4,1 ASIC/VHSIC MJCRCCIRCUITS

Because of differences in tecltnology within the ASIC/JHSIC category, stress
derating tables were developed for MOS digital, bipolar digital, MOS
linear, and bipolar linear ASIC/VHSIC microcircuits. The differences
between the criteria in each table were the results of applying the
different device-specific attributes and stress~specific parameters to the
failure rate equation. These attributes and parcxeters included
temperature activation enexgy (PiT), circuit complexity (Cl), number of
package pins (C2), total transistor gate axea (Lqppp) and dielechric
thickness (Lpppg)e Table 4-2 outlines the values cr equations used in
evaluating these device/stress-specific attributes,

Table 4-2 ASIC/VHSIC Device/Stress-Specific attributes

——

Technology Attrilate Value / Equation

MOS Digital Ea 0.35 eV
Cl 0.01 + 0.000427 * GATES ** 0.588
Pins 11.07 * GATES ** 0.342
(o)} 2.8E~4 * PINS ** 1.08
Transistor Gate Area | 1349 * TRANS ** 0.609 (sq um)
Dielectric Trickness | 4.93 / IRANS #* 0.286 (KA)

Bipolar Digital | Ea 0.60 eV
ClL 0.0025 + 0.0000977 * GATES ** 0.6C1
Fins 9.16 * GATES *% 0.377
(07 2.8E-4 * PINS *% 1,08

MOS Linear Ea 0.65 eV
Cl 0.01 + 0.00150 * TRANS ** 0.4L8
Pins 3.69 * GATES **% 0.318
c2 2.8E~4 * PINS **x 1,08
Trancistor Gate Area | 1349 * TEANS ** (0,609 (5q um)
Cielectric Thickneus | 4.93 / TRANS *% 0.286 ()’A)

Bipolar Linear Ea 0.65 eV

’ Cl1 0.01 + 0.00150 * TRANS ** 0.488

Pins 8.69 % GATES #** 0.318
2 2.8E-4 * PINS ** }1.08
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The temperature activation energies were obtained directly from the tables
provided by the RA/AAT final report. The C1 factor equations were derived
by fitting the C1 factor data associated with the RA/AAT failure rate
medels to an appropriate curve. The Gata and best fit curves are shown in
fiqures 4-1, 4-2 and 4~3 for MOS digital, bipolar digital a 1 MOS and
bipolar linear ASIC/VHSIC microcircuits, respectively. The re itionships
betweer: package pin count and circuit complexity for MOS digital, bipolar
digital and MOS and bipolar linear ASIC/VHSIC microcircuits are shown in
figures 4-4, 4-5 and 4-6, respectively. The data from which the
relationship betveen total transistor gate area and circuit complexity was
derived is shown in figure 4~7 for MOS digital and linear ASIC/VHSIC
nmicrocircuits. The dielectric thickness dependence on circuit complexity
for MOS digital and linear ASIC/VHSIC microcircuits is shown in figure 4-8.

By applying the approoch outlined in section 4.0, maximum junction
temperatures and maximum supply voltages were calculated for the four
ASIC/NVHESYT technologics as a function of circuit complexity. Figures 4-9
and 1-10 show the junction temperature and supply voltage derating curves
for MOS digital microcircuits. Figures 4-11 and 4-12 show the junction
temperature and supply voltage derating curves for MOS linear
mirrocircuits. Figure 4-11 is also the junction temperature derating curve
for bipalar linear microcircuits. Since bipolar ASIC/VHSIC microcircuits
not calculated for these technologies. Figure 4-13 shows the junction
temperature deruting curves for bipolar digital microcircuits. The s0lid
lines on the graphs in each figure represent the best least squares fit to
the caloulated derating values. These equations of the lines are the new

stress derating criteria for each criticality level,
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Figure 4-1 C1 Factor for MOS Digital Microcircuits
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Figure 4-3 C1 Factor for MOS and Bipolar Linear Microcircuits

14 iseg —— u.c:om WNWIXEN -+ punog WNWIUIN o

(Jequinu Boj) S10}SISUBIL O JaQUNN

\ / RS

~ 0
N

8¥% 0 s« SNYHL « 09L0Q°Q + IC0 » I

{90

—i80
10 ‘Apxajdwon HNSHG

s90IA8( JesulT Je{cdig puB SON LVY/Vd

36




- . . Y
Figure 4-4 Package Pin Count for MOS Digital Microcircuits®
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Figure 4-5 Package Pin count for Bipolar Digital Microcircuits
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Figure 4-6 Package Pin Count for MOS and Bipolar ILinear Microcircuits
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Figure 4-7 Transistor Gate Area for MOS Digital and Linear Microcircults
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Figure 4-9 Junction Temperature Derating for MOS Digital ASIC/VHSIC

(sejen jo 607 4 £11) - v28 = (O Bep) dwe ] uojouny wnwixep ‘it |ere] X
(sepep jo Bo7 . 8£8) - 16 = (0 Bsp) 'dwae uopouny wrwnew ‘Il 1eseT ]
(seiB9 j0 6074 2'19) - ££€ = (0 Bsp) "dwe | uoloune wnwixeyw ‘| e +

(laqunu Boj) seien jo 19qunNN

G'G S v 14 N g
L | o
—— g2
//
// 0S
/ ™~

, Gl
/_,, //

Sct

& 00l
NN ,

N BN oSt
~
/ / L1

X
X

) (O mmE m»:ﬁdmaEw._. uoLlounp

ainjelJadwal UOIIOUNP WNW|XEeW

$901A9Q eUbId SON DJISHA/JISY

44




Figure 4-10 Supply Voltage Derating for MOS Digital ASIC/VHSIC
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Figure 4-11 Jurcticn Temperature Derating for
Bipolar/MOS Linear ASIC/VHSIC
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Supply Voltage Derating for MOS Linear ASIC/VHSIC

Figure 4-12
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Supplemeriting the junction temperature and supply voltage derating
paramete.s were the stress derating parameters outlined by other derating
guideline sources and shown in tables 4-3, 4-4, 4-5 and 4-6 for MOS
digital, MOS linear, bipolar digital and bipclar linear microcircuits. In
keepirg with the general approach outlined in Section 3.0, and because of
the uncertainty of criticality assumed with guideline sources not
specifying three criticality levels, only those guideline sources supplying
derating criteria for three criticality levels were evaluated for inclusion
in the updated gquidelines. For each parameter specified by these guideline
sources, a median value for the parameter was chosen. In the case where
the choice was between an even number of values, the average of the two
median values was calculated and then rounded up. Priority was given to
those guidelines specifyire advanced microcircuits, such as VILSI and gate
arrays. The remaining guideline sources were used only as a "sanity check"
of the updated stress derating criteria. Table 4-7 summarizes the new
stress derating criteria for ASIC/VHSIC microcircuits.

As addressed i section 4.0, the complexity of the ASIC/VHSIC device is
limited by the criticality level. Although the higher criticality level
(ILevel I, for exanple) derating criteria allows a more complex device to be
used, the allovwed stress is typically less than the stress allowed at the
lower criticality” level (Level II, for example).

For MOS ASIC/VHSIC microcircuits, both maximum junction temperature and
maxirun supply voltage are a function of circuit complexity. Therefore,
these two parameters can be conbined to form effective Safe Cperating Areas
{SOAs) for these microcircuits. Figures 4-14, 4-15 and 4-16 display the
SOAs of MOS digital microcircuits for criticality levels I, I1 and III,
respectively. In each graph, the top set of SOAs is for a 1lCu) gate
microcircuit, the middle set of SOAs is for a 10,000 gate microcircuit and
the bottom set is for a 1€0,000 gate microcircuit. Multiple SOAs are
displayed as part of each set of SOAs according to the required lifetime of
the microcircuit. The "squareness" of the SOA indicates the level of

independence of the temperature and voltage factors.




Table 4-3 ASIC/VHSIC MOS Digital Microcircuits Guidelines

DYNAMIC OUTPUT MAXIMUM | MAXIMUM
CRITICAUTY GUIDELINE UPPLY FREGUENCY CURRENT JUNCTION | OPERATING
LEVEL bt VOLTAGE (POMS) (FANOUT} | TEMP, TEMP,

(POAV) (PORV) (deg C) (deq C)
ALB 70 80 80 85 NL
c 75+ 8n * 70 (80) * a5+ NL
! D 75+ 80 ¢ 70 (80) * 85 * NL
E 70 80 80 85 NL
F 109 NL 80 NL 30 CFML.
AB a5 80 a5 100 NL
" [} 80 80 * 75 (80) * 100 * NL
D 80~ 8 * 75 (BO) * 100 * NL. .
E 80 80 20 100 NL,
F 100 NL 00 NL 20 CFML
ALD 85 90 90 110 NL
c 8% 80 * 80 (90) * 125 * NL
i D 5" 8o 20 (80) * 128 ML
E 80 %0 80 110 NL
F 100 Ni. 100 NL 20 CFML
q 90 o 80 NL 85
NONE H (Nomira) - NL 80 110 NL
SPECIFIED J NL 75 80 110 NL
K 70 * 80+ 80" 85+ NL
L (Nominal) 70 80 100 NL
M 80 NL 80 125 NL
w 100 50 80 65 PORY 30 C FML
X VoG +/-0.5V NL 75 125 NL
—1 |
KEY: FML w From Maximum Limit

5w Qumpier. MICIOLITGUT - PORS = Paicaiit OF Maximuim Sreeinsd

NL = Not Lisied POV = Percant of Rated Vaiue




Table 4-4 ASIC/VHSIC Bipolar Digital Microcircuits Guiaelines

FIXED DYNAMIC QUTPUY MAXIMUM MAXIMUIM
CRITICAUTY sUPPLY FREQUENCY CURHENT JUNCTION | OPERATING
LEVEL GUIDEUNE :;:::;E VOLYAQE POME) (FAN OUT) TEMP. TEMP.
(PORY) (PORY) (deg ©) {twy C)
AsB +/- 3% NL 80 80 85 NL
c +/ 3% * NL 75+ 70 (70) * 85 * NL
I [»} NL 75 75 * 70 (70) * 85 * NL
E 4/- 3% NL. 80 80 85 NL
F NL NL ML 70 NL 32 C FML
ASB +/- 5% NL 90 85 100 NL
i ¢ MORL NL 8 * 75 (75) * 100 ¢ NL
o ML 80* 80* 75(75) * 100 * NL
E +/- 5% ML 90 90 100 ML
F NL NL ML 80 NL 25 C SML
AsB +i- 5% ML 25 b 1o NL
Pel +- 5" NL 20 ¢ 80 (80) * 125 * NL
" D NL 85+ 90 * £0 (80) * 2L NL
E Por 8peo. NL ] ' ) 1% NL
F NL NL NL %0 NI 20 C FML
NONE G +/- 5% ML 90 80 NL a5
SPECIFIED H N (Nonina) NL B 110 L.
Y J NL NL 75 80 110 M.
K NL 70 * 80 * B8O " 85 ML
L NI (Nominal) 79 FY) 100 NU
M 0% NL Ny 80 124 NI
w +/- 5% NL 50 20 85 POV | 30CFML
X +/- 0.5V NL NL 75 127 NL
" = Cofmy. i WMsorocr oufte POMS = Parcent of tdwdmasm Bpeciied

NL = Hot Usted POY = Porcert of Rated Yalue




Table 4-5 ASIC/VHSIC MOS Linear Microcircuits Guidelines

INPUT QUTPUT MAX. MAX.
CRMCALTY | GUIDE: vgt.ﬁr’:‘c")‘s’s VOLTAGE FREQ, CURRENT o«PsggE: JUNCT. oP.
LEVEL UNES (POMS) (FAN OUT) MONT TEMP, TEMP,
(POAY) (PORV) (PORV) (PORV) {dog ) {deg ©)
ASB 70 80 NL 70 NL 80 NL
| c 75" NL 80 * 70 (80) * NL 85+ NL
D 75 HL 80 * 70 (80 * NL 85" NL
£ 70 60 NL 70 NL 80 NL
E 80 60 NL NL L33 NL 30 CFML
AMB 80 70 NL 75 NL £5 NL
" c 80+ 70 NL 75 (80) * NL 95 * NL
0 80 * NL g0 75 (80) * NL 100 * NL
E 0 70 NL 80 NL 05 NL
F 80 60 NL NL 80 NL 25 CFML
AL o0 76 ML an NL 105 Nt
" c 0" 70 NL 80 (40) * NL 105+ N
D (LY N. 80 * 80 (90) * NL 125 NL
F 80 70 NL () NL 103 HL
F 80 ) NL NL 90 NL 20 C FML
_ G 90 20 NL 80 75 NL a5
wowe s 0 NL 70 NL 110 NL
8eESIAIED J 70 70 75 75 60 110 NL
K B0 100 NL 80 75w 100 NL
L (Nomina) 75 NL 70 50 NL 125
M NL 80 85 o5 a5 125 NL
w 80 a5 50 7% NL 680 PORV 30 C ML
L X e 75 NL ML ML 125 NL

KEY: * = Compiax Mictotircults

"* « WOSt B8, BIiGIT VAraLons iivery

denending on device typs

FML = From Meximum | jmh

PO = Parcant of Maximum Spectfiad

PORV = Pmcent of Rated Value
NL = Not Listed
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Table 4-6 ASIC/VHSIC Bipolar Linear Microcircuits Guidelines

U T MAXIMUI M|
CRITICALITY GUIDELINE 33:;;5 cgﬁo&: FREGIUENCY gug:gnr o:sP::xE:ou JUNCTDO':{ ggemm%mc
LEVEL (PORY) (PORV) (POMB) (FAN OWY) (PORY) TEMP, TEMP,
Fony) (deg C) (aep ©)
ALB 70 60 NL 70 NL 80 NL
| c 3% * N LN 70 70) ¥ NL 85+ NL
o) 75" NL 75 ot NL 85+ NL
E 70 60 NL 70 NL 80 NL
E %0 80 NL NL 55 NL 30 CFML
A8 80 70 NL 75 NL 95 NL
“ c +-5% 70+ N 7575 N 05 * NL
o} 80 * NL 80 * 5 (I8 * NL 100 * NL
E 80 70 KL 80 NL 5 NL
F 80 e0 NL NL 80 NL 25 CFML
AD 80 70 NL 80 WL, 105 NL
" c +/-5% * 70" NL 80 (80) * NL 105 * NL
D 8s* NL o+ 80 (80) * NL 125+ NL
E 80 70 NL, 80 NL 108 NL
r 80 60 NL NL 0 NL 20 CFML
NONE G 30 70 NL 80 75 NL ]
BPECIFIED H 75 80 NL 70 NL 110 NL
J 70 70 75 75 110 NL
K 80 ** 100 NL 80 754 100 NL
L (Nominal) 75 NL 70 NL 125
M NL 80 85 85 85 125 NL
w L 63 50 75 NL 60 POHV 30 C FML
X 75 75 NL NL NL 129 NL
REY"
* = Complex Miorooirouiis PCRY = Percars of Raled Vahs
NU = NeA Linted

#* = Worst case; alight variations jikety
depending on device type

FML = From Magdram Limet
POMS u Peroery of Medmum Bxreciad
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Table 4-7 ASIC/VHSIC Stress Derating Criteria

000°0} 000'CH ovo'at “SuBL | WNWIXBR - AWXOIduIoD BRask
[ 48 601 €8 {n Bep} "dwe ] uoHoUn( Wnwixey n_ww gy ebed
{0s) 08 5) 5L (04} oL (AHOd) WO ued weunonding | MY LR
06 o8 S szmvmw Kouenberd
04 0L 09 {AHOJ) eBeyoA Induj
%S -/+ %S -/+ %€ I+ {syoa) ebeyoA Addng (1) | sEeun Jeiodig
00009 000'92 00008 sejen wnwpep - Axejdwe) 1NN
szt g8 L (o B9p) "dwe ) LOHISLN WNWIXSH (2 gy ebed
fos) ce sz} sz 0oz (AHO) N0 g4 usung inding | by 2nbid
06 o8 SL (SO} Aousnbel
%S -+ %S -i+ %e -+ (syoa) 8beijop Aiddng (1) |1eubig seodig
C000L 0000} 000'0L “suBJ L WNWEY - AX3idwo) ¥ndi) ,
szl 851 £8 (0 Bep) "dwe uonouny wnwiey () gy ebed
(06) c8 | (os) sz {os) 0 (AHOd) O ue4 Wweuny Inding | ¥ aindi4
08 W 08 08 {SWOJ) Aouenbeid
0L 0L 09 9mwn_ ebeyon induy
(be0 es L) /012 | (I1€0 a8 /68 | (SIED #s 8L} /002 (sucA) ebejop Aiddng (1) | 1EeUN SOR
000'09 000'09 00009 sazeny WNLER - Aix3jdwoD ¥nal
s2k 143 ] (7 Bsp) ‘dwe uonoUNP Wnwixey (2 v mmmwa
(06) 08 (0s) sz {08) 0L (AHOQ) o U4 Susungnding | ST 14
08 08 08 {SWODJ) Acuenbely
(€2e0 a0} f 264 | V€V O)/ELL (02E0 +2 O} /5214 {syoa) ebeyop Addng (1) | [eubig SOW
Hi 1eA07) il 18Ae7 | [8A87 JejeLisiad BupeieQ | LUONBILISSBID




Figure 4-14 Criticality Level I SOA for MOS Digital ASIC/VHSIC
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25 Criticality Level II SOA for MOS Digital ASIC/VHSIC

-

Figure 4~

. 00000k —o— 000°0t —— 000} —— 00} —u—
$INOH djeiodD

(O Bop) ainjessdway uorjounp
S/t 0]} 8 GCh 00l Gl s G2

0
f I | ,ﬂ*
(898D nﬁoo.oo:
< s & p e

(991€D 000'04)

-

(s3i0A) abeyjop Ajddng

8l

Yywdy €6S0°C = 44 Il 18AdT ANjRolID
$901A9Q 1eHBIG SOW DISHA/DISY




Figure 4-16 Criticality Level III SOA for MOS Digital ASIC/VHSIC
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4.2 MICROPROCESSOR MICROCIRCUITS

The stress derating criteria for microprocessors was developed similarly to
the ASIC/VHSIC microcircuits, with two exceptions. First, the lack of
stress—failure data and reliability models for bipolar or MOS linear
microprocessors precluded the development of derating criteria for these
technologies. Second, the circuit complexity factor, C1, in the RA/AAT
failure rate model was a function of bit count. Therefore, stress derating
tables were generated for the three categeries of microprocessors, 8-, 16-
and 32~bit, for both MOS digital and bipolar digital technologies. The
differences between the criteria in each table were the results of applying
the different device-specific attributes and stress-specific parameters to
the failure rate equation. These attributes and parameters included
itemperature activation energy (PiT), circuit complexity (Cl), number of
package pins (C2), total transistor gate area (Lpppp) and dielectric
thickness (Lppppg)- The values or eguations used in evaluating the

device/stress~specific attributes are outlined in table 4-8.

Table 4~8 Microprocessor Device/Stress-Specific Attributes

Technology Attrihute value / Equation
MOS Digital Ea 0.35 eV
Cl 0.14
Cl 0.28
Cl 0.56
Pins 11.07 * GATES ** 0.342
(00 2.8E-4 * PINS ** 1.08

Transistor Gate Area | 4047 * TRANS #* 0.463 (sg um)
Dielectric Thickness | 25.18 / TRANS ** 0.412 (kA)

Bipolar Digital Ea 0.60 eV
Cl1 G.06
C1 0.12
Cl 0.24
Pins 9.16 * GATES ** 0.377
c2 2.8E-4 * PINS ** 1.08




The temperature activation energies and C1 factor values were obtained
directly from the tables provided by the RA/AAT final report. The
relationships between pin count and circuit complexity for MOS digital and
bipolar digital microprocessors are the same as the relationships
associated with MOS digital and bipolar digital ASIC/VHSIC microcircuits,
respectively. The circuit complexity dependence of total transistor gate
area and dielectric thickness for MOS digital microprocessors are shown in
figures 4~17 and 4-18, respectively.

By applying ‘the approach outlined in Section 4.0, maximum junction
temperatures and maximum supply voltages (MOS) were calculated for the two
microprocessor technologies, three bit counts each, as a function of
circuit complexity. Figures 4-19 and 4-20, figures 4-21 and 4-22 and
figures 4-23 and 4-24 are the junction temperature and supply voltage
derating curves for MOS digital microprocessors of 8-, 16- and 32-bit
complexities, respectively. Figures 4-25, 4-26 and 4-27 are the juncticn
temperature derating curves for 8-, 16— and 32-bit bipolar digital
microprocessors, respectively. The solid lines on the graphs in each
figure represent the best least squares fit to the calculated derating
values, These equations of the lines are the new stress derating criteria
for each criticality level.

It is noted here that a review of the range of complexities within each
category of microprocessor showed the transistor counts varied marginally
for 8-bit microprocessors (22,000 to 27,000 transistors) as compared to
16-bhit (30,000 to 120,000 transistors) and 32-bit (80,000 to 1,000,000
transistors) wmicroprocessors. Therefore, an approximate worst case 8-bit
microprocessor complexity of 10,000 gates was assumed and the stress
derating equations for 8-bit microprocessors were changed to the values of
those equations at the 10,000 gate complexity.

Supplementing the junction temperature and supply voltage dera'ing

parameters were the stress derating parameters outlined by other derating
guideline sources as shown in tables 4~9 and 4-10 for MOS digitel
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microprocessors and bipolar digital microprocessors, respectively. 1In
keeping with the general apprrnach outlined in Section 3.0, and because of
the uncertainty of criticality assumed with guideline sources not
specifying three criticality levels, the method for evaluating the stress
derating criteria for microprocessors was the same as the method used for
evaluating the stress derating criteria for ASIC/VHSIC microcircuits.
Table 4-11 summarizes the new stress derating criteria for microprocessors.




e 4-)7 Transistor Gate Area for MOS Digital Microprocessorsl
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Figure 4-18 Dielectric Thickness for MOS Digital Microprocessors
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Figure 4-19 Junction Temperature Derating for
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Figure 4-20 Supply Voltage Derating for

8-Bit MOS Digital Microprocessors
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Junction Temperature Derating

for 16-Bit MOS Digital Microprocessors

Figure 4-21
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Figure 4-22 Supply Voltage Derating
Bit MOS Digital Microprocessors

for 16-
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Figure 4-23 Junction Temperature Derating
for 32-Bit MOS Digital Microprocessors
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Figure 4-24 Supply Voltage Derating
for 32-Bit MOS Digital Microprocessors
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Figure 4~25 Junction Temperature Derating
for 8-Bit Bipolar Digital Microprocessors
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Bit Bipolar Digital Microprocessors

Figure 4~26 Junction Temperature Derating
for 16-
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Figure 4-27 Junction Temperature Derating
for 32-Bit Bipolar Digital Microprcces
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Table 4-9 MOS Microprocessor Guidelines

DYNAMIC OUTPUT MAXIMUM MAXIMUM
CRITICAUTY GUIDELNE SUPPLY FREQUENCY CURRENT JUNCTION OPZRATING
LEVEL VOLTAGE (POMS) (FAN OUT) TEMP. TEMP.
(PORV) (PORV) (deg ©) (deg C)
A&B 70 80 80 85 NL
C 75+ 80 * 70 (80) * 85« NL
( ) 75+ 80 * 70 (80) * 85 * NL
E 70 80 80 85 NL
F 100 NL 80 NL 30 C FML
A&B 85 80 85 100 NL
0 c 80+ 80 * 75 (80) * 100 * NL
D 80 * 80 * 75 (80) * 100 * NL
E 80 80 90 100 NL
F 100 NL 90 NL 20 C FML
ALE 85 $0 90 - 110 NL
C g5 80 * 20 (90) * 125+ NL
f o 8s * 80 * 80(90)* | 125+ NL
E 80 90 90 110 NL
£ 100 NL 100 NL 20 C FML
—
G NL 90 NL NL 85
SrearED H (Nominal) NL 80 110 NL
: J N 75 80 110 NL
K 70+ 80* 80+ 85 * NL
L (Nominai) 70 80 100 NL
M 80 NL 80 125 NL
w 100 50 80 65PORV | 30 CFML
X Vee +/-0.5V NL 75 125 NL

KEY:

* = Complex Microgcincutts
ML = Not Listed

FML = From Maximum Umit
POMS = Percent of Maximum Specired
PORV = Percant of Rated Value




Table 4-10 Bipolar Microprocessor Guidelines

* m Compiex Microciroutts

NL = Not Liskd

POMS = Percent of Medmum Specied

FORAY = Percent of Rated Value

73

FIXED DYNAMIC DUTPUT MAXIMUM MAXIMUM
CHTICALITY SUPPLY 8UPPLY FAEQUENGY CURAENT JUNCTION OPERATING
LEVE. QUIDELINE VOLTAGE VOLTAQE (POMS) {FAN OQUT) TEMP, TEMP.

! ) PoRY) (PORV) (@3 G} {deg C)
ALB +{- 3% NL 80 30 85 NL
c +/-3% * NL 75" 70 (70) * a5 * ML
! o NL 75+ 75+ 70 (70) * a5+ NL
E +/- 3% NL 80 80 85 NL

F NL NL NL 70 NL 30 C FML
ALB +/- 5% NL %0 85 100 NL
[ c +f- 5% * NL 8o * 75 (@5) ¢ 100 * NL
D NI 80 * 8o * 75 {75) * 100 * NL
E +/- 5% NL 90 90 100 NL

F NL NL NL 80 NL 25 C FML
AAB +/-5% NL 9 %0 110 NL
c +-5% NL %0 80 (80) * 125+ NL
"' o NL 85+ so* 80 (89 * 125+ NL
£ Per Spec. NL 95 20 15 NL

F N NL NL 20 NL 20 C FML
G +/- 5% NL 90 NL NL 85
NONE H NL (Nominel) NL 80 110 NL
SPECIFIED J NL NL 75 ) 110 NL
K NL 70* 80" 80 * 85+ NL
L NL (Nominal) 70 80 100 NL.
M 10% NL NL 80 125 NL

w +/- 5% NL 50 80 65 PORYV 0C FML
X +/- 0.5V NL NL 75 125 NL

KEY: FML = From Madmem Limit




Table 4-11 Microprocessor Stress Derating Criteria
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%

4.3 PROM MICROCIRCUITS

The stress derating criteria for PROM devices was developed similarly to
ASIC/VESIC microcircuits, with exceptions for EEPROMs. These exceptions
centered un the need to include the Loy~ term in the failure rate mode.
of equation (2). The differences between the criteria in each table were
the results of applying the different device-specific attributes and
stress-specitic parameters to the failure rate equation. These attributes
and parameters included temperature activation energy (PiT), circuit
complexity {€1), number cf package pins (C2), tctal transistor gate area
(Lpppp) and dielectric thickress (Lpppp). The values or egnations used
in evaluating the device-specific énd stress-specific attributes are
outlined in table 4-12.

The temperature activation energies were obtained from the pre-release
version of MII~HDBK-217 Revision F. The C1 factor equations were derived
by fitting the Cl1 factor data associated with the RA/AAT reliability models
to an appropriate curve. The Cl1l data and best fit cuarves are shown in
figures 4-28 and 4-29 for MOS PROMS and bipolar PROMs, respectively. The
value for maximum pin count was derived by examiration of current sugplier

Table 4-12 PROM Device/Stress-Specific Attributes

o —

Tochnelogy Attribute Value / Eguatian

MUG Ea 0.60 eV
c1 0.00085 -- 5.45E=-6 * BITS ** 0.515
Pins 40
2 2.8E-4 % PINS ** 1.08
Transistor Gate Arca | 1.209E6 (sg um)
lieciectric Thickness 2.31 / BITS ** 0.175 (kA)

Bipsolar Ea 0.60 €V
Cl 0.0094 + 6,20L-5 * BITS ** 0.514
pins 40
c 2.8B-4 * PINS ** 1.08"°

)




1

Figure 4-28 C1 Factor for MQOS PROMs
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. 1
Figure 4-29 C(C1 Factor for Bipolar PROMs
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data books which described memory complexities up to one megabit. The
total transistor gate area for MOS PROMs was extracted directly from the
RA/ARAT final report. The dielectric thickness deperidence on newnory
complexity for MOS PROMs is shown in figure 4-30. ’

By applying the approach outlined in section 4.0, maximum junction
temperatures and maximum supply voltages were calculated for the two ¥ROM
technologies as a function of memory complexity. Figures 4-31 and 4-32
show the supply valtage derating curves for MOS PROMs excluding EEPROMs and
EEPROMs, respectively. ‘fhe maximum supply voltage for EEPROMs is lower
than the maximum supply voltage for other PROMs because it wacs traded off
with the number of write cycles. It is noted, however, that the dirference
in supply voltage between EEPROMs and other types of PROMs of similar
complexity is at most 0.85 volts. In the trade-off between supply voltage
and number of write cycles for EEPROMs, the only guideline used was the
requirement was that the supply voltage remain above 5V for all EEPROMs up
to 1 Mbit complexity for any criticality level. Figure 4-~33 shows the
wrrite cycle derating curves generated for EEPROMs. Since bipolar PROMs do
not experience wear out due to TDDB, supply vcltage derating curves are not
calculated fcr this technology. The solid lines on the graphs in each
figure represent the best least squares fit to the calculated derating
values.

Supplementing the junction temperatire and supply :

parameters were the siress derating parameters outlined by other derating
guideline sources as shown in tables 4-13 and 4-14 for MOS PROM devices and
bipolar PROM devirces, regpectively. In keeping with the general approach
outlined in Section 3.0, and because of the uncertainty of criticality
assumed with guideline sources not specifying three criticality levels,

only those guldeline sources supplying derating criteria for three

cniticality levels were evaluated for inclusion in the updated guidelines.
For each parameter specified by these guideline scurces, a median value for
the parameter was chosen. In the case where the choice was between an even
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Figure 4-31 Supply Voltage Derating for MOS PROMS Excluding EEPROMs
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Figure 4-32 Supply Voltage Derating for EEPROMs
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Table 4-13 MOS PROM Guidelines

DYNAMIC OUTPUT MAXIMUM MAXIMUM

CRITICALITY SUPPLY 7 JUNCTION OPERATING
LEVEL GUIDELINE VOLTAGE F:—:gUMZ?CY C(L;gﬁ ENT ] Teme. TEMP.
(PORV) i (deg C) (deg C)
A&B 70 80 80 85 NL
c 75+ NL 70* 85* NL
! 0 75 NL 70 + 85 * NL
£ 70 80 80 85 NL

F 100 NL 80 NL 30 CFML
A&R 85 80 85 100 NL.
i c 80* NL 75* 100 * NL
D 8o+ NL 75" 100 * NL
E 80 80 90 100 NL

F 100 NL 90 NL 20 C FML
A&B 85 a0 490 110 N
G a5 » NL 80 * 125 * NL
i D 85+ NL 80 * 125+ NL
E 80 90 a0 110 NL

F 100 NL 100 NL 20 C FML
, G NL g0 NL NL 8s
SNI?ENCEIFPD H (Nominal) NL 80 110 NL
= J NL 75 80 110 NL
K 70* 80 * 80 * 85+ NL
L {Nominali) 70 NL 100 NL
M 80 NL 80 125 NL

w 100 50 80 65PORV | 30 CFML
¥ vee +/-0.5V NL 75 125 NL

KEY:

* = Complex Microcirculits

NL = Not Ligtix)

FML = Frorm Mwdinum Limit
POMS = Percant of Masdmum Spacified
PORY = Parcen: of Ratad Vaiue




Table 4-14 Bipolar Prom Guidelines

FOED DYNAMIC OUTFUT MAXIMUM MAXIMUM
CRTICAUTY GUIDELINE SUPPLY 8UPPLY EREQUENCY CURRENT JUNCTION OPERATING
LEVEL VOLTAGE VOLTAGE (POMS) PORY) TEMP. TEMP.

(POAV) (deg C) (ueq C)
A&B +/- 3% NL 80 80 85 NL
o] +/-3% * NL NL 70 * 85" NL
! D NL 75 NL 70* 85¢ NL
E +/-3% L 80 80 a5 NL
F NL NL NL 70 NL 30 C FML
rag +/- 5% NL %0 85 100 NL.
il (o} +/-5% * NL NL 75 % 100 * NL
o NL. 80 * NL 75* . 100* NL
E +/- 5%, NL 2 20 100 NL
F NL ML NL 80 NL 25C FML
AsB +/- 5% NL 95 20 110 NL
L] C +/- 5% * NL NL 80 * 125 * NL
D NL 85* NL 80 * 125 * NL
E Per Spec. NL 95 90 115 NL
F NL i NU en NL 20 C FML
NONE (<] +/- 5% NL. 80 NL NL 85
SPECIFIED H NL (Nominaf) NL 80 110 NL
J NL NL 75 80 110 NL
K NL 70 * 8o * 8o * a5 * NL
L NL (Nominal) 70 NL 100 NL
M 10% NL NL 80 125 NL.
w +/- 5% NL 56 80 65 PORV 30 C FML,
X +/- 0.5V NL NL. 75 125 NL

KEY: FML = From Medmum Lima

= = Compiex Miorocircuile POMS = Porcent of Madmum Speoled

NL = Mot Usted PORV = Perceni of Sated Valus




number of values, the average of the two middle values was calculated.
Priority was given to those guidelines specifying advanced microcircuits,
such as VLSI and gate arrays. The remaining guideline sources were used as
a "sanity check" of the updated stress derating criteria. Table 4-15
summarizes the new stress derating criteria for PROM microcircuits,
including *he pertinent stress derating criteria from the current version
of the Guidelines.
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4.4 MICROCIRCUIT APPLICATION NOTES

The following application notes for advanced technology microcircuits were

developed from a review of applicable literature, supplier surveys and

other stress derating guidelines. These application notes may also be

found in Appendix A.

Digital Microcircuits:

1.
2.
3.
4.
5,

10,
11.

Advanced technology microcircuits are sensitive to ESD.

Unused inputs should be connected to a supply voltage or grcund.

Supply filtering is required to filter out transients.

Heat sinks may be required to maintain der.ted junction temperatures.

Design margins should be used for input li:akage (+100%), fanout (~20%)
d frequency (-10%).

wood engineering judgement should be used to derate other microcircuit

characteristics, including hold and propagation delay times, to

produce a conservative design.

Circuit design must avoid application of reverse voltages on device

leads.

Do not exceed the current density derating described by the equation

Current Density = 366 / (Temperature in deg. C ** 1.67)

or 5E5 A/cm“, whichever is smaller, for aluminum-based metallized

microcircuits for either internal circuit operation or output driver

operation (see figure 4-34).

(Bipolar} Supply voltage deviations from the specified nominal will

shift. internal bias points which, when coupled wich thermal effects

can cause erratic performance.

(MOS) Inmput destruction may cccur by shorting leads during assembly.

(MGS) High speed transients may result in parasitic bipolar latch-up.

Linear Microcircuits:

1.

2'
3!

Each linear device is unique and the designer should have a thorough

knowledge of its application requirements to assure that the device is

operated within its performance envelope at all times.

Heat sinks may be required to maintain derated junction temperatures.

Design margins should be used for gain (-20%) and offset voltages and

currents (+50%).

The circuit design must avoid application of reverse voltage on device

leads.

Do not exceed the current density dey ating described by the equation
Current Density = 366 / (Temperature in deg. C ** 1.67)

or 5E5 A/cm“, whichever is smaller, for aluminum-based metallized

microcircuits for either internal circuit operation or output driver

operation (see figure 4-34).
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Figure 4-34 MaXxinum current Density for Microcircuits
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5.0 MIMIC DERATING GUIDELINES

For advanced technalogy MIMIC devices, the RA/AAT reliability models! can
be summarized in general form by '

I = PiQ * [(C1A * PiTA + C1P * PiTI) * PiA + C2 * PiE) % PiL (3)

where: '

L is the MIMIC failure rate in failures per million hours,

PiQ is the quality factor,

PiTA is the temperature acceleration factor for active devices,

PATP is the temperatnre acceleration factor for passive devices,

PiA is the MIMIC application factor,

PiE is the apnlication environment factor

PiL is the learning factor,

Cl1A is the circuit complexity failure rate for active devices, in
failures per million hours,

C1P is the circuit complexity failure rate for passive devices, in
failures per millicon hours, and

C2 is the package complexity failure rate in failures per million
hours.

A review of the literaturel®17122 concerred with MIMIC failure, during

the time since the RA/AAT failur~ rate models were dgenerated, resulted in
no change to this basic model.

The stress parameters and attriisutes that directly affect the calculated
failure rate for a MIMIC device are embedded in the Pi and complexity
failure rate factors of the reliability model. To extract the maximum
stresses allowed for each criticality level from the factors in the
reliability model, L in equation (3) must be set to the maximum failure
rate allowed by each criticality level. Since MIMIC devices were not
included in either the current. version of the Guidelines or any version of

89




MII~HDBK-217, tliese maxinum failure rates are not specified in table 3-3.
Therefore, an alternate approach was used to bound the failure rate for
each criticality level. It was noted that the maximum failure rates
calculated for silicon microcircuits closely approximated the failure rates
that would e calculated given probabilities of success 6.zl 0.99%0, 0.9900
and 0.9000 at 10,000 hcurs for criticality levels I, II and III,
respectively. The actual failure rates associated with these threc
probabilities of success are 0.1001, 1l.0050 and 10.5361, respectively.
These three failure rates were used in the apprcach for developing stress
derating criteria in a fashion similar to the apprcach used for advancad
technology silicon microcircuits. The parameters and attributes of the
failure rate model isctors were separated into thiree groups, one group for
criticality-specific (CS) attributes, cone group for device-specific (DS)
attributes and the other group for stress-specific (SS) parameters. Table
5-1 cutlines the relationship between the factors in the failure rate
equation and the distinction between criticality~specific, device specific
ana stress-specific parameters and attributes associated with tne rfactors.

There were two types of device-specific attributes, technolegy and
complexity. The technology attribute of the C2 factor was handled by
noting that the pin count for most MIMICs does not exceed 10 pins. The
packaging technology selected was the one that gave the highest failure
rate for a 10 pin package according to th: RA/AAT final report. Having
bound the package complexity, the circuit complexity attribute was handled
by noting that the relative difference in values of the C1lP factors Zor
MIMIC devices with 11 to 100 passive elements and MIMIC devices with
greater than 100 passive elements was less than 10 percent, and that many
MIMIC devicres had more than 10 passive elements. Therefore, the C1P factor
for 4iMICs with greater than 100 passive elements was used to represent the
C1P factor for MINMICs with 11 to 100 passive elements. Four sets of
derating criteria were developed to handie the two C1A and two (1P circuit
complexity categcries of MIMIC devices.




Table 5-1 Attributes and Parameters of MIMIC Mcdel Factors

Factor Type | Attribute / Paramete:x

PiQ cs Application Envirorment

8

Channel Tenperature

PiTA

PiTP

?

PiA N/A | Application
PiE Application Environment

Years In Preoducstion

Circuit Complexity, Active Devices

Circuit Camplexity, Passive Devices

SR EE

Package Technology

[ o T, UL PO RN, Y S
ravkaye alploaAlLly

v 8 B 8 8

The criticality-specific attributes included application environment and
years-in~production. The application enviromments for the PiQ factor were
S-level, B-level and B-level for criticality levels I, II and III,
respectively. The application environments for the PiE factor were Sp,
Ay and Gy for criticality levels I, .. and IIl. respectively. These
application environments were chosen since the¢y were the most closely
related to the application environments outlined in the current version of
the Guidelines. The years-in-production attribute for the experience
factor, Pil, were 2 years, 1 year and 0.75 years for criticality levels I,
IT and III, respectively. These years in production were chosen based upon
current experience with component procurement for systems that can be
categorized by the definitions given for each criticality level.




The stress-specific parameters, as mentioned previcusly, a.e the only ones
that, when changed, result in a different failure rate for any given
MIMIC. The channel temperature parameter was the only parameter that couid
be varied to obtain the maximum failure rate for the MIMIC. -With the
device~-specific, criticality-specific and stress-specific attributes and
parameters defineq, the maximum chanrnzl temperature derating criteria was
develcped.

The criteria in the MIMIC stress derating table was the result of applying
the device-specific attributes and stmuss-specific parameters to the
failure rate equation. These attrilzutes and parameters inzluded
temperature activation energy (PiTA and PiTP), circuit complexity (Cl1A and
C1PF) and number of package pins (C2). Table 5-2 outlir.es the values used
in evaluating these device/stress-specfic attributes.

The dependence of failure rate aad proL=zcility of success at 10,000 hovrs
of cperation are shown in ficures 5-1 anit 5~2, respectively. By applying
the approach ocutlined in sections 2.9 and 4.0, the maximum channel
teuperature is calculated by setiing (Fe rIMIC failure rate of equation (3)
to the failure rates nf the three coriticality levels. The channel
tenperature derating criteria for %1.:IC devices is found in table 5-3.

Table 5-2 MIMIC LDevicesstress-Specific Attributes

Technology i Value / Equation

ev
ev

© by

5
-4
2
9

2.8E~4 * PIIS ** 1.08




Figure 5-1 MIMIC Failure Rate
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It is noted here that the calculated derated channel temperature stress for
level IIX mission criticality (approximately 160 to 165 deg C) was above
the region of validity of the RA/AAT reliability model. Therefore, the
maximum channel temperature for level III criticality was set to the
maximum valid channel temperature of 15C deg C.

Since existing stress derating guidelines have purposely affected the
observed failure rates of components used in applications corresponding to
one of the three criticality levels, it was necessary to review the
existing stress derating guidelines to determine their relevance in being
included in the updated stress derating guidelines, given that the factors
being derated were not explicitly included in the current failure rate
models. It was determined that none of the identified fourteen guideline
sources piovided MIMIC stress derating criteria. Therefore, the updated
stress derating criteria for MIMICs is limited to only the newly created
criteria based upon the updated RA/AAT reliability models.

MIMIC APPLICATION NOTES

The following applicetion notes for MIMIC devices were developed from a
review of applicable literature, supplier surveys and other stress derating
guidelines. These application no*es may alsc be found in Appendix A.

1. The environment of the internal package cavity of the MIMIC must be
kept inert.

2. Precautions must be observed during electrical test to prevent
potential latent failure due to overstress.




6.0 POWER TRANSISTOR DERATING GUIDELINES

Power transistors are designed for power amplification and handling high
voltages and large currents. The main concern with power transistors is
the high absolute values of power and the limitation of operation imposed
by second hrzakdown.

Stress derating gquidelines were generated for three classes of power
transistors, silicon bipolar, GaAs and MOSFET. For silicon bipolar power
transistors, an approach similar to the microcircuit approach was used to
develcp the stress derating criteria. For GaAs power MESFETs, adequate
data was accumulated which allowed the generation of a temperature
deperdent failure rate model. For power MOSFETs, it was determined that
the currently accepted derating policies were adequate in providing the
margins of safety and success needed in the intended applications. Reviews
of the literaturel?3-199, supplier surveys and available stress derating
quidelines fram goverrment ard industry sources were used to evaluate and
update the stress derating criteria for these types of power transistors,

The application notes for power transistors were also developed fram a
review of applicable literature, supplier surveys and other stress derating
guidelines. These application notes may be found at the end of this power
transistor section and in Appendix A.

6.1 SILIOON BIFOIAR POWER TRANSISTORS

The junction temp.rature, Tj, in a silicon bipolar power transistor
increases as the the power increases. 'Ihemaxim.nnvalueoijislimited
by the tenperature al which the base region of the transistor becarnes
intrinsic, that. is, the collector is effectively shorted tc the emitter and
transistor actioii corases. The temperature and power hardling ability of a
transistor can be wmproved by providing adequate heat sink for efficient

thermal dissipation, providing a large enough emitter stripe width to

97 -




reduce current density and preferring low voltage, high current spplication
to high voltage, low currant applications. The latter condition results in
higher temperature rises at the stripe centers. <Consequertly, both power
ard junction temperature stresses need to be derated. '

The use of power transistors is often limited by a phenamenon called second
breakdown, wiich is marked by an abnipt decrease in device voltage with a
simidtareous internal ocnstriction of aurrent. For hich power devices,
cperation must be confined to a safe ogpexating area (SOA) so that permanent
damage caused by the second breakdown can be avoided. TFigure 6-1 shows a
typical S0A for a silicon power transistor opzrated in the cammon-ewitter
configuration. At the upper left (d), collector load lines are limited by
axrent-carrying ability. The DC thermal limit (8) is determined from the
thermal resistance Ry, of the device,

Ren = (T3 = Tg) / P (4)

where P is the power dissipated. Therefore, the thermal lirit defines the
maximm allowed junction tenperature, where

Rep (Peak) = (T4 (max) - Tp) / (I¢ x Veg) limit \ (5)
It Tj (max) and Ry, (peak) are assumed constant, then
(Ic X Vog) limit = (Ty(max) - Ty) / Ryp(peak) = constant. (6)

Thus a straight line relationship with slope=l exists bx ™+ mn In(I,) and
In(Veg) - At higher voltages and lower currents, the temperature rise at
the stripe center is responsible for t..e secon breakdown, and the slope
(C) is generally between -1.5 and -2. The device is eventually limited by
the first breakdown voltage, or avalanche, in the SOA as indicated by the
verticai line (D). For umperatures higher than T,, the S0A is reduced.
All portions of the SQA should be derated to provide margins of safety as

needed for application.




figure 6-1 Typical Nower Transistor SOA
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For silicon bipolar power transistors, the MII~HDBK-217E Notice 1
reliability mod~11%2 has the form

L =1Ib * PiA * PiR * PiS * PiQ * PiE * PiT ) (7)

vwhere:

L is the tmnsmbor failure rate in failures per million hours,
I1b is the base failure rate,
PiA is the application factor,

" PiR is the power rating factor,
PiS is the voltage stress factor,
PiQ is the quality factor
PiE is the application enviromment factor, arnd
PiT is the temperature acceleration factor.

Y ——

A review of the literature concernad with silicon bipolar power transistor
failure, during the time since MIL-HDBX-217E Notice 1 failure rate models
were generited, resulted in no change to this basic model.

The stress parameters and attrilbutes that directly affect the calaulated
failure rate for a silicon bipolar power transistor are embedded in the Fi
factors of the reliability model. To extract the maximm stresses allowed
for each criticality level from the factors in the reliability model, L in
equation (7) must be set to the maximum <failure rate aliowed by each
criticality level. These maximum failure rates are specified in table
3-5. In the approach to devely stress derating criteria for silicon
bipolar power transistors, the parameters and attributes of the failure
rate model factors were separated into three groups, one growp for
criticality-specific (CS) attributes, one group for device—specific (DS)
attributes and the other group for stress-specific (SS) parameters. Table
6-1 outlines the relationship between the factors in the failure rate
equation and the distinction between criticality-specific, device-specific
ard stress-specific parameters and attrilbutes associated with the factors.




Table 6-1 Attributes and Parameters of Silicon Bipolar Powver
Transistor Model Factors

Factox Type | Attribute / Parameter

1b N/A Base Failure Rate (constant)
PiQ cs Applicaticn Enviramment
PiT Ss Junction Temperature

PiE cS Application Enviiarment
PiA N/A Application (contstant)
PiR Ss Power Rating

Pis Ss Voltage Stress

In this power transistor reliability model, there were no device-specitic
attributes. The only criticality-specific attribute was the application
environment attribute. The application environments for the PiQ factor
were JANTXV, JANTX and JAN for criticality levels I, II and III,
respective’y. The application environments for the PiE factor were S,
Ayr and 3 for criticality levels I, II and III, respectively. These
application environments ware chosen since they were the most closely
related to the application environments ouvtlined by the criticality levels
in the current version of the Guidelines and resulted in the highest
failure rate for the criticality level tley represented.

The stress-specific parameters, as mentioned previously, are the only ones
that, when charnged, result in a different failure rate for the given power
transistor. These parameters, junction temperature, breakdown voltage and
power rating, are the ones that can be traded-off to obtain a failure rate
similar vo the maximum failure rate that was calculated using MIL-HDBK-217D
Notice 1. As shown in table 6-2, the stress specific attributes include
temrperature activation energy (PiT) and voltage acceleration (PiS).
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Table 6--2 Silicon Bipolar Power Transistor
Stress—-Specific Attributes

Technology Attribute Value / Equation-

Silicon Bipolar | Ea 0.18 eV
PiS 0.045 * exp [3.1 * A/R]

The approach taken to develop the bounds for these stress-specific
parameters first assumed the power rating was the same as the power rating
used to develop the maximum failure rate (200 W). Then, the derating of
the remaining stress-specific parameters associated with the other
reliability model factors, namely breakdown voltage and junction
temperature, were equally weighted in calculating a similar failure rate,
The equal weighting o* the stress porameters resultad in derating both
vaoitage and temperature to 65%, 85% and 90% of their maximum ratings for
criticality levels I, TI and III, respectively. Since the conservative
maximum rating for silicon bipclar power transictors is 150 deg C, the
junction temperature derating for criticality levels I, II and III are 95
deg C, 125 deg € and 135 deg C, respectively.

Sunplementing the breakdown voltage and junction temperature derating
parameters were the stress derating parameters outlined by other derating
gquideline sources shown in table 6-3. In keeping with the general approach
outlined in Section 3.0, and because of the uncertainty of criticality
assumed with guideline sources not. specifying three <triticality levels,
only those guideline sources supplying derating criteria for three
criticality levels were evaluatad for inclusion in the updated guidelines.
The - iaining guideline sources were used only as a "sanity check" of the
updated stress derating criteria. Table 6-4 summarizes the new stress
derating criteria for bipolar silicon power transistors.




Table 6-3 Silicon Bipolar Power Transistor Guidelines

MAXIMUM SAFE SAFE BREAKDOWN ON-OFF
CRITICALITY JUNCTION D,::f:o,, OPERATING OPERATING VOLTAGE | TEMPERATURE
LEVEL GUIDELINE TEMPERATURE pas AREA AHEA o) CYOLES
(g O (PORV), Vo (PORV), ko
ALB 95 50 70 Vce 60ic 60 NL
Cc 95 50 70 Vce 60k NL. NU
i D NL NL NL NL NL NL
E (55 PORV) 50 70 Vce 60 lc 60 Fig. 6-4
F (55 PORV) 55 55 Vce 551ic 60 Fig. 6-4
ALB 105 60 70 Vce 60lc 70 NL,
1 c 105 60 70 Vce 60lc NL NL
D NL NL NL N NL NL
E (70 PORV) 85 80 Vce 70ic 70 Fig. 64
F (80 PORV) 80 80 \ce 80k "W Fig. 64
AL 125 70 70 Vca 60 lc 70 NL
: c 125 70 70 Vce 80l NL NL
i pt NL NL NL NL NL NL
80 MM 7% 980 Vee anlc as Fig. 64
. 85 POV
F (80 PORY) 90 20 Vca 90k 80 Fig. 6-4
NONE a 60 60 75 Vce 751c NL. NL
BPECIFIED H 110 50 75 Ves 60ic 65 NL
J 110 50 75 Vee 20ic NL NL
K 125 £0 75 Vce 75lc NL NL
L NL 50 70 Vce 701ic 70 NL
M 12§ NL 75 Vce 75ic HL ’ NL
w NL 70 NL L NL NL
p 125 NL 106 Vee 100 Ic NL I NL
i 1

KEY:  NL u Not Usterd

PORV = Parcert of Kated Value
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6.2 GuAs POWER TRANSISTORS

Al*hough both JFLT and MOSFET styles of GaAs transistors exist, the most
camon style of GaAs power traunsistor is the MESFET. Fram reviews of the
available literature and supplier surveys, the primary failure mechanism for
MESFETs is the interdiffusion of the deposited meral (typically alumirum or
gold based) ard the Gaas. Tyrically, the interdiffusion results in a
gradual degradation in performence due to increased contact resistance,
decreased drain current arnd reduced chanrel depth.

The primary stress that accelerates this process is temperature. Table 6-5
summarizes in detail the geametry, materials, ratings and life test bias
conditions aid resuits dbtained from various literature and supplier sources
in which the effects of temperature are well documented. It is acbserved
that the primary failure mode has changad frum one that produces
catastrophic results, such as gate burn-out, to one that results in gra - *ul
degradation, such as a 5% change in Ipy. In wost cases, an activation
energy was calculated, suun that a lifetime prediction could be made based
on channel temperature. These predictions are shown graphically in figure
6-2. It is noticed that, at high temperatures where the life test was
moniitored, most of the re:ierences showed fairly consistent results. The
only exception was reference 154.. The mean and standard deviation of the
extrapolated lifetimes fram thc other references enables an appruximation cof
the probability of suwccess to be calculated for a given terxperature. The
0.5 (mean), 0.9000, 0.,9900 and 0.9990 prubabilities of success are shown
graphically in figure 6-3. By evaluating each curve at its intersection
with the 5 log-hour 1lifetime 1line (100,000 hours), and assuming the same
relationship between probability of success and criticality level that was
assumed for GaAs MIMICs, the maximm junction temperature can be evaluated
for each criticality level. The maximum channel temperatures for GaAs power
MESFETs are 85, 100 and 125 degrees Celsius for criticality levels I, II and
11I, respectively.

10%




Table 6~5 GaAs Power MESFET Lifetest Data
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GaAs Power MESFET Lifetest Data (continued)
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GaAs Power MESFET Llifetest Data (continued)
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Figure 6-2 Lifetest Results for GaAs Power MESFETs
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Figure 6-3 GaAs Power MESFET Lifetime Prediction
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Supplementing the channel temperature derating parameter was the stress
derating parameters outlined by other derating guideline sources as shown
‘'n table 6-6. In keeping with the general approach cutlined in Section
3.0, and because of the uncertainty of criticality assumed with quideline
sources not specifying three criticality levels, only those guideline
sources supplying derating criteria for three criticality 1levels were
evaluated for inclusion in the updated quidelines. For each parameter
specified by these guideline sources, a median value for the parameter was
chosen. In the case where the choice was between an even number of values,
the average of the two median values was calculated and then rocunded up.
The remaining gquideline sources were used only as a “sanity check" of the
updated stress derating criteria. Fram a thorough review of the
literature, - it was determined that currently accepted derating policies are
adequate in supplementing the channel temperature derating parameter in
providing the margins of safety and success needed for the application.
Table 6-7 summarizes the new stress derating criteria for GaAs power
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Table 6-6 GaAs Power Transistor Guidelines
MAYIMUM OWER BREAKDOWN ON-OFF
CRITICALITY GUIDELINE TE: HN: I:%RE DISSIPATION VOLTAGE TE“:;F;‘(E:F‘L-‘:SURE
LEVEL ¢
(dog G} (PORV) (POAV)
A&B 95 50 60 NL
c 95 50 60 NL
I D 95 50 60 NL
E {55 PORV) 50 60 Fig. 64
F (55 PORV) 55 60 Fig. 64
A&B 108 60 70 NL
0 c 105 60 70 NL
D 105 60 70 NL
E (70 PORV) 65 70 F!g. 6-4
F (80 PORV) 80 70 Fig. 64
A&B 125 70 70 NL
c 125 70 70 NL
"' D 125 70 70 NL
E (80 PORV) 80 80 Fig. 64
F (90 PORV) 90 80 Fig. 64
G NL NL NL NL
NONE H NL NL NL NL
SPECIFIED J NL NL NL NL
K NL NL NL NL
L NL NL NL NL
M NL NL NL :::
w 82 PORV 70 70 I
X 125 NL L e

KEY: NL = Not Listad
PORV = Percent of Rated Value
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6.3 POWER MOGFETs

MOSFETs cannct be derated in the same way as bipolar junction transistors
because the devices are constructed and operate differently. MOSFETs have
considerably higher input impedance than hipolar transistors, which makes
them suitable for mnicrowave systems. MOSFETs also have a negative
temperature coefficient at high current levels, resulting in the current
decreasing with increasing temperature. This characteristic provides for
temperature stability and prevents the FET fram thermal runaway or second
breakdown. Conseguently, MOSFETs have found increased acceptance as power
devices.

From a thorcugh review of the literature, it was determined that currently
accepted derating policies are adequate in providing those margins of
safety and success needed for the application. The stress derating
criteria for power MOSFET transistors outlined by other derating guideline
sourses is shown in table 6-8. In keeping with the general approach
ortlined in Section 3.0, and because of the uncertainty of criticality
assumed with guideline sources not specifying three criticality levels,
only those guideline smurces supplying derating criteria for three
criticality levels were evaluated for inclusion in the updated guidelines.
For each parameter specified by these guideline sources, a median value for
the parameter was chosen. In the case where the choice was between an even
number of values, the average of the two median values was calculated and
then rounded up. The remnaining guideline sources were used only as a
"sanity check"” of the updated stress derating criteria. Table 6-9
summarizes the new stress derating criteria for power MOSFET transistors.




Table 6-8 Power MOSFET Transistor Guide'ines

MAXIMUM POWER SAFE SAFE BREAKDOWN |  ON-UIF
CRTICALITY JUNCTION DISSIFATION QOPERATING OPERATING VOLTAGE TEMPERATURE
LEVEL GUIDCUNE TEMPERATURE AREA AREA PORY) CYCLES
. a0 (PORV) (PORV), Vce (PORW}, I¢
ALS ] 50 NL NL 60 NL
c 95 50 N NL 60 NL
| 0 NL NL NL NL NL NL
£ (55 PORV) 50 NL NL 0 Fig. &4
£ (55 PORV) 55 55 Vee 551c 60 Fig. 6-4
-
ALD 108 60 NL NL 70 NL
i c 105 60 NL NL 70 NL
D NL NL NL NL NL NL
E (70 PORV) 65 NL NL 70 Fig. 6-4
F (80 PORV) 'y 80 Vca 80lc 70 Fig. 64
ALB 125 70 NL NL 70 NL
c 125 T ML NL 70 NL
W D NL NL NL NL NL NL
€ (80 POTWV) 80 NL, NL ac Fig. 64
g (30 POHV) %0 #0 Voo wIc 80 Fig. 64 i
NGHE a 60 60 75 Voo 751c NL NL
BFECIRIED 1 ja] 110 50 75 Vce 6 lc €5 NL
J 110 50 15 Vee 701c NL NL
K 125 50 (75 vds) 75 1d) NL WL
L NL 50 70 Vca 701c 70 NL
M 125 NL L NL 75 NL
w NL AL NL NL 70 NL
x 125 ML 100 Vou 100 Ic NL NL
——t—

KEY NI = Nod Usled

PORY = Percant of Pahed Vatse




Table 6-9 Power MOSFET Transistor Stress Derating Criteria
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6.4 POWER TRANSISTOR APPLICATION NOTES

The following application notes for power transistors were developed from a
review of applicable literature, supplier surveys and other stress derating
guidelines. These application nctes may also be found in Apperdix A.

1.
2.

Power transistors wmay be sensitive to ESD.

Design margins should be used for gain (+/- 10% for screened devices;
+/~ 20% for unscresned devices), leakage axrent (+100%), switching
times (+ 20%) and saturation voltage (+/- 15%).

Heat sinks may be reguired to maintain derated junction/channel
temperatures.

SOA caxrves, adjusted for junction/channel temperature, should not be
exceeded under any transient corditions.

The mmber of on-off cycles (temperature cycles) shvaild be limited
according the derated power as shown in figqure 6-4.
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Figure 6~4 0On-Off Cycling Limits for Power/Pulse Transistors
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7.0 RF TRANSISTOR DERATING GUIDELINES

RF pulse transistors and RF multitransistor packages have typically
operated in the low microwave frequency range and have been largely silicon
NN transistors. However, because of the advances in performance and
reliability of GaaAs transistors, many of the silicon RF pulse transistcrs
are being replaced by GaAs MESFETS.

Same of the critical parameters and construction details for RF pulse and
microwave transistors include current gain, switching time, doping level in
the base, maximm open circuit voltage (breakdown voltage), off impedance,
on impedance, emitter stripe width, base thickness package and wafer
parasitics and active area gemmetry, includaing interdigitated, overlay amd

Significant failure mechanisms of RF pulse transistors includes
electramigration, ocorrosicon, inteimetallic formation on bonds, roverse
junction leakage and secondary breakdown. Narrow base widths can result in
collector emitter shorts due to temperature accelerated diffusion spikes
and pipes if bulk silicon defects such as dislocations and stacking faults
attention to die size, die attach method, package type and application,
heat sinks and air flow are important factors relating to the derating
criteria. It is ncted that the newer device styles are uore powerful, more
sensitive anl cover greater bandwidths, although the basic technologies are
the same. Therefore, the updated stress derating criteria for RF pulse
transistors and RF multitransistor packages has noct changed fram the
current stress derating criteria, with the exception that perhaps greater
attention to detail is required. This attention to detail is highlighted

in the following two examples.
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In this example, a thermal runaway failuwre was cbserved in a microwave
miltitransistor (NPN) package (see figure 7-1). In this package, two
4-1ransistor arrays were wmounted next to each other. During the failure
analysis, it was determined that in the assembly operation, the second
array was not mounted properly. The array was sitting on top of the edge
of the first array (see figue 7-2). The greatly increased thermal
resistance at that end of the array resulted in thermal overstress and
evertial catastrophic failure of the multitransistor package.

her then this analysis, no additional information was acaumlated on RF
miititransistor packages that indicated a difference between the behavior
of RF miltitransistor packages and RF single transistor packages.
Therefore, it 1s concluded that the stress derating for these packages
should be no different than for RF single transistor packages. It is
recomencded that the stress derating criteria and associated application
notes ftor RF transistors outlined by the current version of the Guidelines
should be followed for RF multitransistor packages.

In a second example, failure analysis performed on 118 RF pulse transistor
field failures of S5P5-40 transmitters identified 76 of the failures to be
related to MOS capacitor overvoltage, high RF voltages due to reflecticn,
transistor mismatch and thermal increases due to reduced die attach. A
detailed thermal analysis identified worst case junction temperatures of 87
degres  CGelsius, well within the required cerating. The RF transistors were
rated =t 50 volts and were not expected to see more than the transistor
emitto~ivse breakdown voltage of 6 volts., However, it was possible to
develepy N7 voltages acruss the MOS capacitors considerably higher than the

emitter-ta.~ kreakdown voltage when looking at 35 watts of pulsed 450 MHz
DCWRr . Tis: enitter-base Jjunction breaks down without damage, but the
cupaTitor dizlectric  bhreaks down as an irreversible short. Good
ergLwaring  vractices need to supolement any derating policy in order to
abtain @ acverrable level of safety and success, ’




Figure 7-1 Catastrophic Damage in an RF Multitransistor Package




Although studies are being performedl®07163 5 petter understard the
effects of peak pulse power per unit gate width, the number of pulses in a
pulse train and the duty cycle of the pulse train on the failure rate of RF
pulse transistors, the data from these studies does not provide encuch
insight into modifying ocwrrent stress derating guidelines for RI' pulse
transistors.

The stress derating criteria for RF pulse transistors was developed
similarly to the stress derating criteria for power t-ansistors. The
channel temperature stress derating developed for GaAs power MESFETS is
also considered applicable for the GaAs RF pulse transistors. The stress
derating criteria for RF pulse trancistors outlined by other derating
guideline sources is shown in tables 7-1 and 7-2 for silicon bipolar RF
pulse transistors ard GaAs pulse MESFETs, respectively. In keeping with
the general approach outlined in Section 3.0, and because of the
uncertainty of criticality assumed with guideline sources rot specifying
three criticality levels, only those guideline sources sumplying derating
criteria for three criticality levels were evaluated for inclusion in the
updated gquidelines. For each parameter specified by these guideline
sources, a median value for the parameter was chosen. In the case where
the choice was between an even number of values, the average of the two
wedian values was calculated and then rounded up. The remaining guideline
sources were used only as a "sanity check" of the updated stress derating
criteria. Table 7-3 summarizes the new stress derating criteria for RF




Table 7-1 Silicon Bipolar R Pulse Transistor Guidelines

MATMUM : SAFE SAFE ON-OFF
CRITICALITY JUHCTIEN oaPnON OPERATING OFEFATING | BRENDOWN | L TuRe
LEVEL QUIDEUNE TEMPERATUFE AREA A CYOLEB
@ Q) (PORY) (PORV), Vo (PORV), 1 (PORY) .
AsB 5 50 76 Vee 50k 60 NL
c 95 50 NL NL €0 NL
! o} NL NL NL NL NL NL
E NL L 70 Vee 60 Ic 60 Fig. 64
F (55 PORV) 55 55 Vea 55ic 60 Fig. 64
ALB 105 60 70 Vce 60 lc 76 NL
I C 105 60 NL NL, 70 NL
D NL NL NL NL NL NL
E (70 PORV) NL 70 Vco S0k NL Fig. 54
F (80 FORV) 80 80 Vce 80lc 70 Fig. 6-4
ALB 125 70 70 Vce 60lc 70 NL
c 125 70 NL ML 70 NL
" D NL NL NL NL NL NL
E (80 PORV) NL 70 Vcs 80ic NL Flg. 64
F (o POy $0 50 Ve S0 iu 0 Fiy. 64
<] N NL NL NL NL. ML
SoeerD H NL NL NL NL NL WL
<0 J 110 50 75 Vce 701ic NL NL
K NL NL NL NL NL ML
L NL 50 70 Vee 79k 70 NL
M 125 NL 75 Ve 751 NL NL
w NL 70 NL NL NL NL
X NL NL NL NL NL NL

KEY; NL = Motilated
PORY = Percort o Asled Vahus
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Tahle 7-2 GaAs RF Pulse Transistor Guideiines

mﬁ&k{ POWER BREANKDOWN ON-OFF
CRIMICALITY GUIDELNE DISSIPATION VOLTAGE TEMPERATURE
LEVEL TEMPERATURE (PORV) (PORV) CYCLES
(6eg C)
A&B g5 50 60 NL
c 95 50 60 NL
| 5) 9s 50 60 NI
= (55 PORV) 50 60 Fig. 64
F (85 PORV) 55 60 Fig. 6-4
A&B 108 60 70 NL
1 C 108 0 70 NL
D 105 60 70 NL
E (70 PORV) 65 70 Fig. 6-4
F (80 PORV) 80 70 Fig. 6-4
A&B 125 7 70 NE
c 125 70 70 NL
i D 125 v 70 NL
E (80 PORV) 80 80 Fig. 64
F (90 PORV) 90 80 Fig. 64
G NL NL NL NL
NONE H NL NL * NL NL
SPECIFIED J NL NL NL NL
K NL NL NL NL
L NL NL NL NL
M NL NL NL NL
w 82 PORV 70 70 NL
X N NL NL Nt

KEY: NU = Not Liste}

PORV = Percent of Rated Value




WNIRA PRICY O IUSIJSd - ANDd A3

“M 0l 0% (A¥Od) #59110A Lmopyealg

o 09 111 {A¥0d) LojIRd|ss| Janog
L ,..........w@r Sg (3 55p) AR 1PUIeY) wwjxeR 13453 5¥39
" Al R O e Tt CETTIO

% o £ wm 0 (A¥0d) 9583104 umopyeIJg

omm 0 A 0 WA 0L (A¥0d) w34y Bujlesadg ajvs

% 09 0 (A¥0d) udjied|ssiq 2amod
1141 6 (3 Bap) "Gl uofIoune wwixew | Jeyodig uwodtyts

111 19a 11 19A97 I 1997

JIsuedey Buliviag

Uo11@9141558])

125

Table 7-3 RF Pulse Transistor Stress Derating Guidelines




APPLICATION NOTES

The following application notes for RF pulse transistors were developed
from a review of applicable literature, supplier surveys and other stress
derating gquidelines. These application notes may also be fournd in Appendix

A.

RF transistors may be sensitive to ESD.

Design margins should w2 used for gain (+/~ 10% for screened devices;
+/- 20% for unscreened devices), leakage current (100%), switching
times (+ 20%) and saturation voltage (+/~ 15%).

Heat sinks may ke required to maintain derated Jjunction/channel
temperatures. '

The design may require exceeding voltage and power derating limits,
hut junctiocn/channel temperature limits should be dbserved at all
times.

The nmumber of on—off cycles (temperature cycles) should be limited
according the derated power as shown in figure 6-4,




8.0 OPTO-ELECTRONIC DEVICE DERATING GUIDELINES

The apprvach to the development of the stress derating criteria for
opto-electronic components was initiated in a fashion similar to the
approach used for silicon bipolar power transistors. However, it was
realized that the differences betweenn the reliability models of
MII-HDBK-217D Notice 1 and MIT-HDBK-217E Notice 1 resulted in up to several
orders of magnitude difference in (improved) predicted failure rates. The
quality factor had changed 2400% to 7000%, and the PiT factor of
MII-HDBK--217E Notice 1 utilizes an activation energy of approximately one
third of the activation energy used in MII~HDBK-217D Notice 1. The use of
the silicon bipolar power transistor approach to stress derating would have
resulted in virtually no stress derating riquired to meet the failure rates
that were considered acceptable at the time the current version of the
Guidelines was released. As an alternative approach, the development of
updated Yacceptable" failure rates for the three criticality levels was
considered. The failure rates that can be dbtaired by applying currently
accepted derating guidelines to the reliability models were deemed to be as
"acceptable" as any other values chosen. Therefore, without having to do
the failure rate calculations and the reverse stress analysis, the
currently accepted guidelines became the updated stress derating criteria

The stress derating criteria for opto—electronic devices, including photo
trancictorse, photo diodes, opto—electronic couplers, injection laser dicdes
and light emitting diodes, was developed by consensus of current stress
derating gquideline sourcves, as outlined in section 3.0. he stress
derating criteria for opto-electronic devices outlined by other derating
guideline sources is shown in table 8-1., In keeping with the general
approach outlined in Section 3.0, and because of the uncertainty of
criticality assumed with guideline sources not specifying three criticality
levels, only those gquideline sources supplying derating criteria for three
criticality levels were evaluated for inclusion in the updated guidelines.
Taklle 8-2 summarizes the new stress derating criteria for opto—eleztronic

devices.
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Table 8-1 Opto-z2lectronic Device Guidelines
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OPTO-EIXWCITRONLZ CEVICE APPLICATION NOTES

The fcllowing application notes for opto-electronic deviues were developed
fran 2 veview of suplier surveys and other stress derating guidelines.
These application notes may also ke fourd in Appendix A.

Hoto Diodes:

1. The gain of APDs should be devated by 3 dB to account for gradual
efficiency degradation and shifts in the operating point.

Opto—covplers:

1. Extermal bypassing may be necessary to prevent damaging intermal
oscillation due to very high gain circuitry within the opto-coupler.

2. Allow for 15% degradation in opto-coupler current transfer ratio (CIR)
over the service 1life of the design. This degradation is egpecially
prevalent at low drive cuwrent. The input drive current should be
well above the turn-cn point.

Light Emitting Diodes (LEDs)

1. OQxrent limiting is required (using a series resistor).

2. Half or full wave rectified AC sire wave is not recomwended for LED
drive current. If rectified AC is used to drive 1EDs, the peak value
of the current must never exceed the allowable DC current maximum.

Injection laser Diodes (I1Ds)

1. Power supplies for TIDs must be carefully designed {o carpletely
eliminare carrent pulses which may cause catastrophic fzcet damage.

2. Output power should be given a 3 dB margin to account for gradual
degradation of the device.

3. lMechanical stress, such as themal or mechanical shock and vibration,
cause crystal lattice defects (Jdark lines) to grow. Stress screening
can be used to eliminate devices with these defects.

4. PBawess optical power of ILDs will damage facets and will destroy the
device. Note that optical power output is strongly temperature
dependent  and must be monitored and ocontrolled to assure safe
operation.

5. For SlO glassivated devices, the integrity of the package hermetic
seal mst be maintained to prevent moisture absorption which will
degrade performance.




9.0 PASSIVE QCMPONENT DERATING GUIDELINES

The passive camponents of interest to this study were hybrid deposited film
resisturs, chip resistors (RM) and chip capacitors, both ceramic (CDR) and
tantalum (CWR). Stress derating guidelines were developed for the chip
resistors and chip capacitors only. Because no stress-failure info, mation
on hybrid deposited film resistors was identified by the literature :¢.uach,
supplier mwveys, other stress Jderating quideline sources or acommlated
field faiiure data, no stress derating guidelines for hybrid deposited film
resistors could be developed.

The styess derating criteria for the chip resistor and chip capacitor was
developed from a review of curent stress derating guideline sources, as
outlined in section 3.0. This approach was taken after finding virtuvally
no information in the literature searchl66-167 concerning stress-failure
reietionships of these passive components, and confirmation by suppliers
that these camonents (virtually) do mot fail. The stress derating
critexia for these passive devices outlined by other derating guideline
saurces is sbown in table 9-1. It is noted that none of the five guideline
sazeces that typically specify three criticality levels outlined stress
derating criteria for chip capacitors. Therefore, the updated stress
derating for chip capacitors is based upon best engineering judgement
biased by the gquideline sources providing only one criticality level
ceriteria. The stress derating criteria for chip resistors was developed in
a fashion similac to that for opto-electronic devices. Table 9-2
sumarizes the new stress derating criteria for chip resistors and chip
capacitors.
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Table 9-1 Passive Device Guid
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PASSIVE DEVICE APPLICATION NOTES

The following application notes for passive devices were developed frum
review of supplier surveys and other stress derating gquidelines. These
application notes may also be found in Apperdix A.

Chip Resistors:

1. hip resistors are sensitive to ESD.

2. 1he design should tolerate a 2% shift in resistance value.

3. Proper trimming is required to prevant latent failure in low noise
arplications.

4. Resistor stacking should be avoided.

5. For pilse applications, the average power calculated fram pulse
maitude, duration and repetition frequency is used to establish the
power derating requirement.

6. Fulsr» mignitixkie should be used to establish voltage derating
reqiil nement:.

7. Fiin temperatures mist stay below 150 degrees Celsius.

8. Voltage stress should stay less than 2 volts/nil.

9. Power density should stay less than 200 W per sguare incii.

10 ‘The effective resistance value will be reduced when used at
frequercies over 200 MHz because of shunt capacitance between the
resistive elements and the connecting circuits.

Chip Capacitor:

1. The sum of the peak AC voltage plus any DC bias voltage must not
evoead the maximum derated operating voltage.

2. Precautions cutlired in MII~STD-198E should be followed.

3. (Ceramic) A design tolerance of +/- 12% should be allowed.

4. (Tantalum) A design tolerance oi +/—- 8% should be allowed,




10.0 SAW DERATING GUIDELINES

The stress derating criteria for SAW devices was developed fram a review of
current stress derating quideline sources, as outlined in section 3.0.
This approach was taken after firding virtually no information in the
literature searchl®3 concerning stress-failure relationships of these SAW
devices. The stress derating criteria for these SAW devices oautlined by
other derating guideline sources is shcwn in table 10-1. It is noted that
the four of the five guideline sources that outline stress derating
criteria for SAW devices are split between two sets of input power
deratirng. Therefore, the updated stress derating for SAW devices is based
upon the most recent update of these quidelines. Toble 10-2 summarizes the
naw stress derating criteria for SAW devices.

SAW DEVICE APPLICATION NOTES

The following application notes for SAW devices were deveioped fram a
review of supplier surveys and other stress dervating guidelines. These
application notes may also be fourd in Appendix A.

1. SAW devices may be sensitive to ESD.

2. Integrity of the hermetic package must be maintained.

3. The design should not subject the SAW device to the rated maximum of
shock, vibration and temperature cycling.

13%




Table 10-1 SAW Device Guidelines

INFUT POWER | INPUT POWER | INPLTPOWER | INPUTPOWER | OPERATING
CRITCALTY [ guipeLNE (<100 MHZ) (>100 MH2) (<500 MH2) (>500 Mh2) TEMPERATURE
LEVEL (@Bm FML) (dBm FML) (dBm FML) (@Bm FML) (deg ©)
A&B 20 10 NL NL NL
C NL NL 13 13 125
i D NL NL 18 13 125
E 20 10 NL NL NL
F NL NL NL NL NL
,8B 20 10 NL NL NL
0 c NL NL 18 13 125
D NL NL 18 13 125
E 20 10 NL NL NL
F NL NL NL NL NL
A&B 20 10 NL NL NL
] NL NL 18 13 125
l D NL NL 18 13 125
E 20 10 NL NL NL
F NL NL LU NL NL
G NL NL NL NL NL
H NL NL NL NL NL
None X NL N L N N
SPECIFED L NL NL NL NL NL
M NL NL NL NL NL
W 20 10 NL NL NL
X NL NL NL NL NL

KEY: N = Not Usted
FML « From Maximum Uit
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11.0 DERATING VERTFICATION

To determine the wvalidity of the stress derating criteria, field faiiure
data was gathered on the ocamponent types of interest to this study.
Because of the Jdifficulty in verirfying space system failures, and the
uravailability of consistent ground based system failure data, only
avionics svstem failure data was collected and reduced to doserved failure
rates. Therefore, the verification of the effectiveness of the stress
derating criteria was limited to criticelity level II criteria.

The avionics systems in question included the AN/APRG-66 and AN/APG-68
radars and the AIQ-131 radar jammer. The field failure data was retrieved
for the years of 1988 and 1989, in which over 1500 sorties were flown for
each system. In reducing the data it was understood that, although the
retest OK (RIOK) failures were not included in this failure summary, not
all the remaining failures were verified. This lack of verification may
resuit in coserved failure rates that are much higher than actual failure
rates. This scenario is typically true for the resistors and capacitors
which tend to be renoved alonyg with associated suspect failed camporents as
a lower risk option to leaving them in place and risk another rework cycle.

Table 11-1 outlines the component types and the dbserved failure rates
based upan the number of failures observed and the totai rumber of device
hours of operation each component type had experienced. It is noted that
this observed failure rete is based upon part removals and not necessarily
verified failures. Alsc included in table 11-1 is the predicted failure
rate for criticality 1level II camponents. These predicted failure rates
were generated in the same fashion as the failure rates outlined in table
3-3. Table 11~2 includes the factor values and rationale used teo gernerate
the failure rates, based on MIL~HDBK-217D Notice 1 and utilizing the stress
derating criteria of the current version of the Guidelines. It is adbserved
that, for the most part, the observed failure rate was camparable to or
less than the predicted failure rate of the component. The exceptions
included thick film chip resistors and ceramic chip capacitors.




Table 11~1 Stress Derating Assessment fur Level II Criticality
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Even if the wunverified failure rates of the camponents are greater than
their actual failure rates, then it would be reasonable to assume the
system design engineer has been fairly successful utilizing the stress
derating criteria. However, with perhaps the exception of the RF
transistors which have a two order of magnitude difference between cbserved
and expected failure rates, lesign engineer may not be guard banding
the design more than that requ by the derating quicelines. Therefore,
either the stress derating quidelines must err on the conservative side or
the system design engineer must be wore knowledgeable of which stresses are
the most critical. In the dev.lopment of the updated stress derating
criteria, increased flexibility was provided in the stress derating
criteria such that the system design engineer may be more sensitive to the
way stresses affect the reliability of his design.

Based on the data of table 11-1, it is difficult to conclude that the
stress derating criteria had campletely fulfilled its intent in keeping the
camponent failure rate below a specific level for the given mission
criticality. However, it is encouraging that, with the lack of
verification of the assumptions concerning the failures, the adbserved
failure rates are close to the expected failure rate target,

It is noted here that not all the device types listed in t:zble 1-1 are
included in table 11-1. The failure rate analysis could not be performed
on several of the canpenants in guestion for the following reasons. First,
same parts (MIMICs) were not used in these systems. Second, the database
structure for part traceability depends on Westinghouse internal part
rmumbers that must be examined to determine camponent type (i.e., ASIC,
PRM, chip capecitor, etc.). To perform this task as stated would be
costly and wt of scope for this contract. Therefore, an alternate

approach was used to collect the failure data.
This approach first identified as many internal part mmbers for each

caonponent type as possible. Then, these part numbers were carpared to the.
as—designed parts 1list for each system. If a match existed, the failure
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databese was searched to identify the number of failures and the total
cperate time of the caponent. Unfortunately, if the initial list of
caponent:  intermal part mumbers was not complete, it is possible that,
although the camonent type was used in the system, it would appear as
though that camponent type was not used.
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12.0 ALTERNATE APFROACH

It is well understood that to determine the influence of each camponent
failure on the criticality of a mission would reguire a complete failure
modes ad effect~ analysis (FMEAD). 1t is also well urnderstood that,
deperding upon .. erchitacture of a system, it is possible to have the
sane style of corponent in two circuits of different criticality. In one
circuit, failure of the camponent may result in total mission failure. In
the other circuit, failure of the component may result in anly degraded
performarce. However, because the system mission is of level II
criticality, for example, the application stresses applied to ixth
camonents are derated acceording to the level II derating criteria.
Actually, the mission—cuitical oagponent might have been better derated
according to Jevel I criteria and the other camonent might have been
better derated according to level IIL criteria. By choosing oy level II
criteria for both camonents, the mission is potentially in more jeopandy
due to camponent 1 and the circuit design is overly constrained due to
camponent 2. Unfcrtunately, this scenario is velid for most system
designs, and deciding which c<rriticality level should be used tor which
camponent in a given application is futile. An alternate apprcach to
stress Gereting of camponents that can address this dilemma is proposed.

it is typical, early in the design phase, to perform a reliability
mrediction on the system ard allocate the peliahility requirement to ite
subsystens. In many cases, thiese allocations are fiowed downn 1o the lowest
subsystem level, the campcnent level. At that time, trade-offs in system
architecture are made such that the syster roliability goal may be
achieved. Stress deratirg guidelines are utilized during this design phase
to assure mission safety and success. Since the criticality of each
caporsnt on the desived system mission is dependent upmn its role in
performing the desired function, it is reasonable to derate the stiess on
that camponent according to the “mission" of the camponent. The level of
stress derating should therefore be dependent upon the acceptable failure
rate of the cumponernt ir its arplication.
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In orxrder to derive stress derating criteria that is flexible enough to be
utilized in a doain of continuous failure rates requires the stress
derating criteria be based on accurate reliability models. It is noted
that the updated stress derating criteria for microcircuits and MIMICs
developed as part of this study was based on the updated reliability models
of MIL-HDBK-217F (to be published). 'The only difference between the
approach taken to update the ocurrent version of the Guidelines and this
proposed approach is the replacement of the three levels of criticality
based on system mission type with a contimuous criticality scale based on
cawponent "mission".

Thz prolem with expanding the scope of criticality levels is identifying
and providing accurate vaiues for all the varisbles associated with
coponent:  failure. This problem is certainly apgparent in the exarple of
micrecirecuits. However, approximations, suca as those used to develop the
criteria in this study, may ove made that simplify an. conservatively bound
the devating criteria until more accurate information is aveilable.

As describeé earlier in this report, the variables of the reliability model
can be separatad into three categories, criticality-specific,
device-specitic and stress-specific. The criticality-spacific perameters
included the FiE and PiQ factors. These factors will typically depend upon
the gaystem mission and camnot be varied to Luprove the safety and success
of the canponent wissicd. The remaining factors inwvolving both
device-specific and stress-specific parameters can be varied to improve the
safety «rd success of the camponent mission.

A problem with evolving camonerni reliabiiity models is the need to
incorporate time dependent failure mechanisms into these models. Since the
resulting failure rate is no longer constant with time, a failure rate does
not  adequately describe the number of failures that might be expected, that
is, the mean time between failures is no longer constant. Therefore, it
may be more reasonable to describe the camponent reliability in terms of 'a

probability of success after a given number of operating hours.




Given both criticality level definition and time dependent failure rate
problems, it 1is still possible to define the appropriate stress derating
criteria for a comporent mission. However, the format in which the stress
derating criteria is to be presented may became tedious when presented in
table format. Figures 12-1, 12-2 and 12-3 show graphically the stress
.derating criteria SQas for component missions with probabilities of success
of 0.9990, 0.2900 and 0.9000, respectively, <or ASIC/VHSIC MOS digital
microcircuits. It is noted that because a prabability of success is used
to gernerate the SQAs the maximum junction temperatures is no longer purely
a function of gate omant, when campared to figures 4--14 through 4-16 in
which a constant failure rate was wused to generate the SQas.
Unfortunately, to adbtain insight into the SOAs for camponent reliability
other than that for which these graphs were generated requires
interpolation between the grapts. Although no suggestions are made at this
time concerning an acceptable table format for this data, it may be
advantageous for the design/reliability engineer to work from stress
derating graphs, such as the one presented in figures 12-1 through 12-3, or
better yet, the actual derating algorithms, in order to maintain an
understanding of the trade-offs between oamponent ocamplexity, applied
stress and camponent reliability.

The importance in making the stress derating criteria "usable" should not
overwhelm the advantages in making the stress derating criteria component
or board "“mission" critical rather than system m’ssion critical. The
method by which system design engineers currently employ stress derating
guidelines may have to change fram time consumirg lock-ups in the tables of
stress derating quidelire hooks to efficient calculations performed
concwrrencly on the workstation used for producing the system design.
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Figure 12--1

Py = 0.9990 SOAs for MOS Digital ASIC/VHSIC
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Figure 12-2 Pg = 0.9900 SOAs for MOS Digital ASIC/VHSIC
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Figure i2-3 Pg = 0.9000 SOAs for MOS Digital ASIC/VHSIC
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13.0 SUMMARY

There are multiple methods by wnich stress deratirg criteria can be
developed. The criteria developed during this study utilized three
methods, the use of existing reliability models, the generation of
stress-failure relationships based upon accumlated failure data and
consensus of stress derating guidelines originating fron other military and
industrial facilities. Although this latter method utilizes the profound
knowledge of others, there may be no accounting for how these criteria were
developed, and therefore no insight into how to modify the criteria for
changing camponent technologies and canplexities. Even though specific
stress-failure reiationships may be developed from accumilated Zailure
data, it is not always reasonable to base the develomwent of the stress
derating criteria on these relationships since the campeting effects of the
individual stresses wmay not being taken into account. The best method (of
the three methods used), therefore, is the one in which current reliability
models are used to describe the pertinent stress-failure relationships.
This method not only allows the insight into the parameters that may be
affected by changing. component technologies and complexities, but also
cambines the canpeting effects of multiple stresses.

Unfortunately, ourrent. reliability models were not available for all the
canponent types described in table i-1, and therefore the other two methods
of gernerating stress derating criteria were used. It is noted, however,
that mxch effort was expended in evaluating and attempting to wpdate the
reliability models of the discrete and passive canponents. The literature
searches initially identified over 606 articles of which approximately 240
articles were germane to this study. Of thuse 240 articles, 160 articles
were made available and reviewed. Forty-eight component suppliers of the
seventy-two suppliers contacted also provided stress-failure data.
Unfortunately most of the data accumilated from these sources could not be
used to generate stress derating criteria because key elements of the
stress-failure relatiorships were missing. For example, some sources did

not provide the time to failure, while other sources leit out stress data,
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and still others neglected to provide a reference point along with the tem-
perature activation energy which is needed to describe the failure distribut-

ion,

Tha level of stress derating should be based upon the expected failure rate
provided by the reliability model. However, not all the factors that may
require derating are currently identified in the reliability model. These
factors may include output current or propagation delay times. If changes
in these factors result in changes in the cbserved reliability of the
campanentt, then these factors also belang in the reliability model. An
evaluation of whether the stress derating parameters identified during this
update of the Guidelines should be included in the appropriate reliability
model is recommended. In addition, it is recammended that an alternative
approach to stress derating, as described in section 12.0, be evaluated to
determine the advantages and disadvantages in making the stress derating
criteria camponent or board "mission" critical rather than system mission

critical.
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Figure A-1 On-0if Cycling iimits for Power/RF Pulse Transistors
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PROGRAM DERASICL.FOR

PORPOSE::
Campute derating curxves for ASIC - MOS Digital and Linear
devices given a constant probability of success or a
constant failure rate (with time). Revision 1

KhhkhhkhkRhkkkhrdhkhdhhkkhkkhkhhkhkkhkhkkhkdkikhikhhkkkkhkkhhkhhkhkkkkhkhhkhhkhkkhkkk

OQOOOOOOOOOQO

IMPLICIT REAL#8(A-H,0-2), INTEGER*4 (I-M)
CHARACTER*80 HEADER
DIMENSION VDATA(7,177) ,NEXT(7)

Open Input and Output Data Files

OPEN (5,FILE='INPUT.DAT’,STATUS='0OLD’)
OPEN (6,FILE='TEMP.DAT , STATUS='NEW')
OPEN (10,FILE=’ /,STATUS='NEW’)

CcOn0n

ONON]

8.4D0
0.4D0
1.7816D5
22.00
0.3C0
2.222D0
= 4.500

Input Required Data
READ (5, % END=500)
5 CONTANUE

KEAD (5,2000,END=500) ITYPE,DUMMY,A,PiQ,PiL,PiE, MINLG,MAXIG,
* MINIH,MAXIH,MINTP, MAXTP, ITNCTP

VRITE (*,2000) ITYPE,DUMMY,A,PiQ,PiL,PiE,MINLG,MAXIG,MINLH,
* MAXTH,MINTP ,MAXTP, INCIT

BY38EE
i

:

oNoNe

C
C Begin Number of Gates Increment. loop
C
DO 400 K = 0,6
C
C Inicialize Data Array
C

DO 201 =12,7
DO 10 J = 1,177
VDATA(L,J) = 0.DC




10 CONTTNUE
NEXT(I) = 0
0 OONTTNU] .
GATES = 10.D0%* (DBLE(K) /2.D3) * 1000.010

Calculate # of Transistors and # of Pins

OO0 On

TR = GATES * 4.Du
PINS = 11.07D0 * GATES *# (.342D0

Calaulate TOX, AS, Anza rcceleration, Cl amd 2

Nnoo

TOX = 4.93D0 / TR ** 0,286D0
AS = 1349.D0 1 TR ** (Q.50910
CALL AA(AQ,AS,U00,ACCAA)

= 0.01D0 + 0.000427D) * GATES**0.588D0
=2

a
) .8D-4 * PINS**1.08D0

Begin Tine Increment loop

(o NoN e

3
[y
Q
(=
]
1

= MAXIH,MAYIH
STIME = DBLE(S)
TIME = 10,D0%%T
IF (ITYPE) 30,30,40
30 OONTINUE
Psmax = DUMMY
Elmax = ~1.D6 * DILOG(Psmax) / 'LTME
GOTO S0
40 CONTINUE
Elmax = DUMMY
Psmax = DEXP(-1.D~6 * Limax * TIME)
0 CONTINUE

Calculate Max Temp Fram Lambda 217F Focs Number of Gates and Pins
After Checking For Out Of Range Condition

(o NoNpNeRY]

ARG = Elmax/ (PiQ#*Pil) - C2 * PiE

IF (ARG.IE.0.D0) GOIO 150

TEMP = 1.D0/298.D0-DLOG (10. DO*ARG/C1) /A
TEMP = 1.D0 / TEMP - 273.D0

MAXIMP = DINT(IMIN1 (DBLE (MAXIP) , TEMP) )

ouatput. Status

a0On

WRITE (*,%) ‘TIMP
WRITE (6,%) ’TEMP

= !, TEMP, ' Elmax = /,Zlmax
‘,TEMP, ’ Llmax = /,Elmax

n

i

Begin Temperature Increment Loop

OO0




NEXT(J+1) = 0
DO 100 I = MAXTMP,MAXTMP, INCTP
IS = DBLE(I)
CALL AT(70,TS,Ea,ACCAT)

C
C Calculate Failure Rate for New Temperature Using MIL~HDBK-217F
C
PiT = 0.1DO*NEXP(-A* (1.D0/ (TS+273.D0)-1.D0/298.D0))
EL = PiQ # PiL * (C1 * PiT + C2 * PiE)
IF (EL.GE.EImax) GOTO 100
Psac = DEXP(-1.D-6 * EL * TIME)
Foco = 1.D0 - (Psmax / Psac)
CALL ZVAL(Fcc, Z)
U=S8TIME - SO * 2
ACCAEF = (10.DO**(UO - U/ACCAA)) / ACCAT
15 = DLOG(ACCAEF) / BETA + BO
V=ES * TOX * 10,.D0
IF (V.GT.18.D0) V = 18.D0
NEXT(J+1) = NEXT(J+1) + 1
VCATA (041, NEXT(J+1)) = V
VDATA (1,NEXT(J+1)) = TS
100 QONTINUE
MAXT = MAX (NEXT(J) ,NEXT(J+1))
GOTO 200
150 CONTINJF
WRITE (*,*) ‘ARGUMENT CUT OF RANGE’
WRITE (10,*) ‘ARCUMENT OUT OF RANGE’
200 CONTINUE
C
e Outut Data
C
WRITE (*,*) LUMMY,A,PiQ,PiL,PiE
WRITE (10,*) DUMMY,A,PiQ,PiL,PiE
DO 300 I=1,MAYI+1
WRITE (10,1000) VDATA(L,I), (VOATA(J+1,T),J=MAXIH, MAXILH)
100 CONTTNIIR
400 CONTINUE
' GO10 5
500 STOP
C
C Format Statements
C

1000  FORMAT (1X,7F10.2)
2000 FORMAT (I2,G%.4,4G8.2,715)
END
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SUBROUTINE AA (A0,AS,UO,ACC)
khkkhkkkhhkhkhkhhkhkkhhkhkhkhkkkhhkhkhkhkkhkkkkkhthkhkkhhkkhhrhkhhkhhkhhkkhkhkkhkihkkidkikkikk

SUBROUTINE AA

PURPOSE:

Calcalate the acceleration factor due to dielectric area
relative to a reference area.

USAGE:

CALL AA (AO,AS,UO,ACC)

DESCRIPTICON OF PARAMETERS:
AD =~ refererce area (square microns)
AS -~ operating area (square microns)
U0 ~ log of median time of reference distribution (hours)
ACC - acceleration factor
SUBRCOUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
ZVAL -~ calculates murber of sigmas fram the mean

khkkhkkhdhkkkrkhkkihkhikhkkhhhhkhhkhkikhikhkkiihkikikihidhihikihhhikkkkhkihkkik

OQO()OOOOOQO()OOOOOOOOOOC)OOQO

IMPLICTT REAI#8 (A-H,O0~Z), INTEGER*4 (I-N)
F =20 / (RO + AS)

CALL ZVAL(F,Z)

ACC = 1.10 + (Z / UO)

RETURN

END




SUBROUTINE AT(TO,TS,Ea,ACC)

C
Chthkhkhhkkhkhkkhkrhkbhhkhkhkhkhkhkhhkhhhkhhkhhkhdhkhhkhkhkhhkhkhkkhkhhkkhhkhkhhkhkkhkhhrrkkhhkhikihhn

SUBRCUTINE AT
PURPOSE:

Calculate the acceleration factor due to temperature stress
relative to a reference temperatuze

USAGE:

CALL AT (TO,TS,Ea,ACC)
DESCRIPTION QOF PARAMETERS:
0 -~ reference temperature
%Sa - operating temperature

activaticn energy (eV/deg K)
acceleration factor

ACC

SUERCUTINES AND FUNCTION SUBPROGRAMS REQUIRED:

NONE

Khkkhkkhkhkhkhhkhkhkhkkithhhhhihhhhkhhkhkhkhhkkhbkhkhkkkhktkihhtbdhkhkkhhkkhkkhhikkkkhkkikkhkk

OQOOOOO(’)GOOOOOOGGOOOOOOOO

IMPLICIT REAL#3 (A-H,0~Z), INTEGER*4 (1-N)

B = 8.617D-5

ACC = DEXP((Ea/L)*(1.D0/ (TO+273.D0) = 1.D0/(TS+273.D0)))
RETURN

END




SUBROUTINE ZVAL(F,Z)
Fddokkkkhhkhkkkdkhkhrkhkhkikhhhhhkrhkhhrrrrhkrrkikkihhrrhhkkhhhkrhkhhhkikk
SUBROUTINE ZVAL

PURPOSE:

Calculates the mumber of sigmas away from the mean of a
normal distribution for a given prabability of failure
(cumlative percent failure in decimal). This subroutine
uses the Newton-Raphson method of finding roots.

USAGE:
CALL ZVAL(F,Z)

DESCRTPTTON OF FARAMETERS:

F - probability of failure (cumlative percent failure in
decimal)
Z - mmber of sigmas from the mean of the normmal distribution
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
QNDA ~ cumulative normal distribution approximation

khkkkhkkhkhkkkkhkhkhkkhkhkhkhkhdkkkhkhkkkkkhkkkhkhkhkkk ********’k*********Q************

OQOOOOOO(’)OOOOOOOOOOOOOOOGOQO

IMPLICIT REALA8 (A-H,O0-Z), INTEGER*4 (I-N)

C
IF (F.1E.0.5D0) ZNEW = —-0.5D0
I¥ (F.GT.0.5D0) ZNEW = 0.5L0
7 = ZNEW
C
DO 5 N=i,100
CALL CNDA(Z,FNEW, IFIAG)
IF (IFIAG.BQ.-1) FNEW = 0.D0
IF (IFIAG.EQ.1) FNEW = 1.DO
PHI = FNEW ~ F
PHIPRI = 1.DO/ (DSQRT(2.D0*3.141592653589793) *DEXP( . SDO*Z*%2) )
ZNEW = 2
2 = 2 ~ PHI / PHIPRI
IF (DABS(Z-ZNEW)/DABS(Z) .IT.0.C000001D0) RETURN
5 OONTINUE

RETURN
END




SUBROUTINE (WDA (Z,F, IFLAG)

AAERAARARREARKERL AR AR AATAAAhkkAkhkkhkhkdkhkhkkhkkhkhkhkkhkhkhkhkAkkrkhkhkhkrhkhkrhkkhrkkk

Q(’)

SUERCUITINE CNDA
PURPGSE:
Calculates the value of the camulative normal distribution at
a given number of sigmas away fram the mean. This subroutine
uses a series expansion of the normal distribution to perform
the integration.
USAGE:
CALL CNDA (Z,F,IFIAG)
DESCRIFPTION OF PARAMETERS:
Z ~ mmber of sigmas from the mean = (X - u) / s
F - area under the normal distribution at Z
IF1IAG - error flag = 0 OK
= =1 Z is less than -5.5
= 1 Z is greater than 5.5
SUBRCUTTNES AND SUBPROGRAMS REQUIRED:

NONE

kkkkhdeddkhhkkhhkkhkhhkhkkhkhkhkhkkhkhkhkhhkhkhkhkhkikhkhkkhkhkhkkhhkkkhhkhkhktkkhhhkikkkikkkkikikk

OQ0000CDOOOOOOOOO00(’)0000()0000

IMPLICIT REAL*8 (A-H,0-Z), INTEGER*4 (I-N)

N=20
F=0.D0
C
IFIAz = 0
IF (2.GT.5.5D0) IFIAG = 1
IF (Z2.1T.-5,5D0) IFLAG = -1
IF (IFIAG.NE.0) REIURN
C
1 FACT = 1.DO
DO 3 N=0,135
RN =

IF (N.EQ.0) GO TO 2
FACT = FACY * RN
2 SUMN = (=1.D0)**N # Zx* (2%N+1)

SUMD = (2.DO*RN+1.D0) * 2.DO**N % FACT
SUM = SUMN / SUMD '
F = F + SUM
3 CONTINE
F=F / DGQRI(2.D0 * 3.141592653589793) + 0.5D0
RETURN

IEND
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MISSION
OF
ROME LABORATORY
Rome Laboratery plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C’SI) aclivities
for all Air Force platforms. It also executes selected acquisition programs

in several ureds uf expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C'BI systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research prcgrams in areas

SRR R LR LR LI LR XA PRXR
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including, but not limited to, communications, command and contrel, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, eleciromagnetic technology, super-

conductivity, and e! .tronic reliubility/maintainability and testability.




